

29th International Liquid Crystal Conference (ILCC 2024) 21st – 26th July 2024 Rio de Janeiro – Brazil

Oxadiazole-functionalized pyrene derivatives: Effects of alkyl-1,3,4oxadiazole substituents on photophysical, electrochemical, and liquid crystalline properties

<u>Ferreira, Marli^{1*}</u>; Girotto, Edivandro²; Bock, Harald³; Durola, Fabien³; Hillard, Elizabeth A.⁴; Bechtold, Ivan H.⁵; Gallardo, Hugo².

*Corresponding author: marli.ferreira@polsl.pl

¹Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland; ²Department of Chemistry, Federal University of Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil; ³Centre de Recherche Paul Pascal, CNRS, 115 av. Schweitzer, 33600 Pessac, France; ⁴University of Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France; ⁵Department of Physics, Federal University of Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil

Keywords: Pyrene; 1,3,4-Oxadiazole; Discotic Liquid Crystal.

Multifunctional materials are widely used in optoelectronic devices. 1,3,4-oxadiazole and pyrene core have such as good chemical and thermal stability and high fluorescence^[1,2] Furthermore, 1,3,4-oxadiazole has electron-accepting properties, while pyrene is a π -electron-rich group with rigid nucleus ^[3] with great potential for columnar liquid crystals.

Combining the properties mentioned above in the same material results in a good candidate for use in OLED devices. In this work, the synthesis of three new alkyl oxadiazoles from pyrene 1,3,6,8-tetracarboxylic acid ^[4,5] and the effects of alkyl-1,3,4-oxadiazole substituents on photophysical, electrochemical, and mesomorphic behavior were investigated, in order to obtain a discotic liquid crystal with high fluorescence to use in the construction of OLEDs. It was found that the 1,3,4-oxadiazole heterocycle is an excellent polar group for inducing columnar packing and, in addition, resulting in emitters with strong luminescence and promising for use in optoelectronic devices.

Acknowledgements: M.F. greatly acknowledges support from the Polish National Science Centre funding, grant no.: 2021/43/D/ST4/03017. We kindly acknowledge the support received under the CAPES-COFECUB program. The authors are also grateful to the CEBIME-UFSC, for the HRMS analysis, and LDRX-UFSC, for the XRD experiments.

References:

[1] J. Han, J. Mater. Chem. C, 1, 7779-7797 (2013)

- [2] Z. Xie, et al., Chem. Rev., 111, 7260-7314 (2011)
- [3] Z. Xie, et al., J. Org. Chem., 89, 1681-1691 (2024)
- [4] F. Li, et al., Dyes and Pigments, 201, 110203 (2022).
- [5] Y.-L. Huang, et al., Inorganic Chemistry, 56, 705-708 (2017).