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Jarosław BOBEK*, Andrzej POLAŃSKI 

Chapter 1. NUMERICAL MODELING OF THE LIESEGANG  

PRECIPITATION PATTERNS WITH LINEAR AND RADIAL 

GEOMETRIES 

1.1. Introduction 

Liesegang patterns are stripes, bands or rings [1] formed by moving fronts of chemical 

reactions. Processes involved in formation of Liesegang patterns are diffusion, reaction 

and precipitation. Liesegang patterns occur in many reactions/processes and can be seen 

in all types of media, hard substances, gels, liquids or gases. Due to variety of possible 

media and processes/scenarios Liesegang patterns are reported and researched in many 

systems in chemistry, geology, biology [2]. Occurrence of the Liesegang phenomenon 

requires at least two chemical reactants, called inner and outer electrolytes. Outer 

electrolyte, of higher concentration diffuses into the medium and reaction with inner 

electrolyte takes place. Under certain conditions precipitation of the reaction product 

then occurs leading to formation of layers of separate precipitates. 

Formation of precipitation patterns [1, 3] in reaction – diffusion systems have always 

gained a lot of interest of researches, motivated both by challenges of experimental and 

modeling problems and wide range of potential applications. A very interesting and 

motivating recent application of precipitation phenomena is designing reaction – 

diffusion – precipitation processes for oscillatory drug release systems [4]. It can involve 

different chemical reagents and different geometries. Developing such systems poses 

several challenges. The first challenge is developing reliable mathematical/ 

computational models of reaction – diffusion – precipitation reactions. The second one 

is using the developed model as a control system that allows obtaining desired 
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parameters of time and space distributions of concentrations. Finally, the third one is 

experimental validation. 

In this paper we present a mathematical and computational model of reaction – diffusion 

– precipitation systems with linear and radial geometries. Our mathematical and 

computational system allows validations of reaction – diffusion – precipitation reactions 

modeling assumptions and fitting model parameters to data. In order to verify our 

modeling environment we use experimental data on formation of Liesegang patterns [5], 

[6-8]. We solve partial differential equations of reaction-difusion-precipitation 

processes by using discretization based on suitable 1D or 2D meshes. We confront 

computational predictions of percipitation patterns with experimental measurements by 

evaluating Matalon-Packter laws, i.e,. laws concerning precipitation bands spacing, their 

time occurence and their widths.  

In contrast to the literature, where only 1D Liesageng patterns are studied numerically, 

our research has led to creating a stable computational environment allowing predicting 

outcomes of both 1D and 2D diffusion – precipitation chemical reactions.  

Chemical and mathematical model 

Liesegang patterns are based on reaction process of two diffusing substances. The effect 

of reaction is stationary product which precipitate periodically in time. Basic reaction 

could be represented as 

 𝐴 + 𝐵 → 𝑃  

where: 

A, B – inner/outer electrolyte 

P – reaction product. 

The inner electrolyte can be understood as substance equally distributed in the whole 

reaction system and the outer electrolyte as substance delivered from outside of reaction 

system. 

So, the whole chemical process can be divided in three mainly operations [9]: 

1. Diffusion of outer electrolyte into and inner electrolyte inside reaction system [10]. 

2. Precipitation of reaction product. 

3. Agglomeration of diffusing substances on precipitated product. 

The first one point is substance diffusion. In accordance to second Fick’s law the 

diffusion equation for chemical system can be described as 

 𝜕𝑐

𝜕𝑡
= 𝐷 ∗ ∇2𝑐 
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Simultaneously when substances concentration ratio exceeds critical value the 

precipitation process occurs. Important information is that whole product doesn’t appear 

in same time. That process is stationary and can be described as 

 𝜕𝑐

𝜕𝑡
= 𝑘𝑃 ∗ ([𝐴] ∗ [𝐵] − 𝐾𝑆𝑂) ∗ 𝜃([𝐴] ∗ [𝐵] − 𝐾𝑆𝑂) 

 

where: 

[A], [B] – concentration of substrates 

kP – reaction rate constant 

KSO – product solubility constant 

θ(x) – Heaviside step function 

The second point references to supersaturation theory [11] which is simplest method to 

describe precipitation of Liesegang rings. When substrates concentration ratio exceeds 

critical value the precipitation process occurs. That is one-way reaction – product 

doesn’t dissolve into substrates. 

To complete mathematical description of diffusion-precipitation-agglomeration system 

we need to provide agglomeration equation. First of all, the crystal product is needed 

because surrounding ions agglomerate on precipitated crystals. When substrates 

accumulate on crystal surfaces precipitation process still occurs so agglomerization 

process can be described as 

 𝜕𝑐

𝜕𝑡
= 𝜆 ∗ [𝐴] ∗ [𝐵] ∗ [𝑃] 

 

where: 

[A], [B], [P] – concentration of substrates and product 

λ – aggregation rate 

Summarizing all of equations (2), (3) and (4) whole model can by described as 

 

𝜕𝑎

𝜕𝑡
= 𝐷𝑎∇2𝑎 − 𝑘𝑃 ∗ (𝑎 ∗ 𝑏 − 𝐾𝑆𝑂) ∗ 𝜃(𝑎 ∗ 𝑏 − 𝐾𝑆𝑂) − 𝜆 ∗ 𝑎 ∗ 𝑏

∗ 𝑝 

𝜕𝑏

𝜕𝑡
= 𝐷𝑎∇2𝑏 − 𝑘𝑃 ∗ (𝑎 ∗ 𝑏 − 𝐾𝑆𝑂) ∗ 𝜃(𝑎 ∗ 𝑏 − 𝐾𝑆𝑂) − 𝜆 ∗ 𝑎 ∗ 𝑏

∗ 𝑝 

𝜕𝑝

𝜕𝑡
= 𝑘𝑃 ∗ (𝑎 ∗ 𝑏 − 𝐾𝑆𝑂) ∗ 𝜃(𝑎 ∗ 𝑏 − 𝐾𝑆𝑂) + 𝜆 ∗ 𝑎 ∗ 𝑏 ∗ 𝑝 

 

which includes diffusion of inner and outer electrolyte, product precipitation and 

agglomeration (reducing concentration of substrates and increasing concentration of 

product) and product stationarity [12, 13].  
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Initial condition of substances concentration in system should be assumed as 

 

𝑎(𝑥, 0) = 𝑎0 ∗ 𝜃(𝑥 > 0 & 𝑥 < 𝐿) or 𝑎(𝑥, 0) = 𝑎0 ∗ 𝜃(𝑥 < 𝑅) 

𝑏(𝑥, 0) = 𝑏0 ∗ 𝜃(𝑥 ≤ 0|𝑥 ≥ 𝐿) or 𝑏(𝑥, 0) = 𝑏0 ∗ 𝜃(𝑥 ≥ 𝑅) 

𝑝(𝑥, 0) = 0 

 

At the beginning there’s no product, the inner electrolyte (a) is equally distributed in 

whole system and the outer electrolyte (b) is only outside of system. 

Next point is to define boundary conditions. The outer electrolyte has to be continuously 

delivered into system. The product should never exit whole reaction environment such 

as inner electrolyte, but boundary condition for inner electrolyte is little more difficult. 

When product appears, it’s behavior should be as boundary for inner electrolyte. It can 

be defined as high agglomeration rate but also high reaction rate constant [12, 14]. The 

general boundaries can be defined as 

 

𝑎(𝑥 == 0|𝑥 == 𝐿, 𝑡) = 𝑎0 

𝜕𝑏(𝑥 == 0|𝑥 == 𝐿)

𝜕𝑥
= 0 

𝜕𝑝(𝑥 == 0|𝑥 == 𝐿)

𝜕𝑥
= 0 

 

but also, important boundary named “moving boundary condition” [9, 12] which 

represents precipitating product at position xn and at time tn behaving as limit of system  

 𝑏(𝑥 == 𝑥𝑛, 𝑡 > 𝑡𝑛) = 0  

where: 

xn – appearing band position 

tn – appearing band time 

Geometry 

In experiments we tested one- (1D) and two-dimensional (2D) geometry [15]. In 1D 

system the assumption that length is much greater than width is needed. Hence, we can 

interpret the diffusion process as depending only on one coordinate. The concentration 

of inner electrolyte was equally distributed along reaction environment and outer 

electrolyte was delivered at both ends. For 2D geometry to minimalize dependencies the 

circle geometry with same assumption of electrolytes distribution was prepared. 1D 

geometry was prepared with length paramter of the reaction area equal to 200 mm and 

2D geometry was prepared with radius equal to 10 mm. 
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Mesh generation 

For generating 2D mesh was used Matlab implememtation of the Delaunay triangulation 

algorithm with maximal edge length set to 0.25. Algorithm is based on linear geometric 

order. For 1D geometry raction area length was divided into 0.1 mm fragments [15]. 

Computational method 

Calculations were made using Matlab R2020b software and more specifically using 

Partial Differential Equation (PDE) toolbox. The first step was to implement equations 

(5). PDE toolbox interpret equation as 

 
𝑚

𝜕2𝑢

𝜕𝑡2
+ 𝑑

𝜕𝑢

𝜕𝑡
− 𝛻 ∗ (𝑐𝛻𝑢) + 𝑎𝑢 = 𝑓 

 

so, we can write (5) system as 

 

 

 

In both goemetries system of equation coefficients m, d, c, a and f are matrixes. For our 

setup the m parameter is equal 0, d is identity matrix, c is diagonal matrix of diffusion 

coefficients, a is equal 0 and f is no derivate dependent part. 

Experimental model 

Experimental parameters were idealized to point precipitation of product in result of 

reaction-diffusion process. Initial value of substrates concentration was: 0.5 mol/dm3 for 

outer electrolyte and 0.05 (0.1) mol/dm3 for inner electrolyte in 1D system (2D) [15]. 

Boundary conditions were implemented as equations (7) and (8). 1D and 2D parameters 

are presented in Table 1.1. [5-8]. 
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Table 1.1 

Experimental models’ parameters 

 1D model 2D model 

Inner electrolyte 

diffusion coefficient 
1 ∗ 10−3 [𝑚𝑚2 ∗ 𝑠−1] 0.8 ∗ 10−3 [𝑚𝑚2 ∗ 𝑠−1] 

Outer electrolyte 

diffusion coefficient 
1 ∗ 10−3 [𝑚𝑚2 ∗ 𝑠−1] 1.2 ∗ 10−3 [𝑚𝑚2 ∗ 𝑠−1] 

Solubility constant 3.5 ∗ 10−5 [𝑚𝑜𝑙2 ∗ 𝑑𝑚−6] 3.5 ∗ 10−3 [𝑚𝑜𝑙2 ∗ 𝑑𝑚−6] 

Reaction rate 

constant 
1 ∗ 101 [𝑑𝑚3 ∗ 𝑚𝑜𝑙−1 ∗ 𝑠−1] 1 ∗ 101 [𝑑𝑚3 ∗ 𝑚𝑜𝑙−1 ∗ 𝑠−1] 

Aggregation rate 

constant 
1 ∗ 101 [𝑑𝑚6 ∗ 𝑚𝑜𝑙−2 ∗ 𝑠−1] 1 ∗ 101 [𝑑𝑚6 ∗ 𝑚𝑜𝑙−2 ∗ 𝑠−1] 

Experiment time 2 ∗ 106 [𝑠] 86400 [𝑠] (24 ℎ) 

Results and discussion 

Using parameters described in Table 1.1., two models (1D and 2D) was tested and 

verified against Matalon-Packter law (spacing law), width law and time law. Both 

models are suitable to be good description of diffusion-precipitation-agglomeration 

system. 

1D model 

One dimensional model was predicated using described geometry and parameters to 

predict creation of rings. However, problem is only described on one coordinate, rings 

aren’t noticeable – only where product precipitate. 

 
Fig. 1.1.  Predicated bands with 1D model 

Rys. 1.1.  Wzorce przewidziane modelem 1D 
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Table 1.2 

Predicted bands in 1D model 

band no. position Xn [mm] width [mm] time Tn [s] 

1 26.5 4.1 150000 

2 30.8 4.8 200000 

3 36.1 4.9 280000 

4 41.8 4.9 360000 

5 48.2 5.5 470000 

6 55.1 5.7 610000 

7 62.7 5.8 800000 

8 71.1 6.1 1000000 

9 80.7 6.3 1260000 

Tabele 1.2 contains bands description seen on Fig. 1.1. That data was used to prove that 

model explain Liesegang rings, precipitating bands should fulfill spacing, time and 

width law (Matalon-Packter law). The time law is presented in Fig. 1.2 as linear 

dependency position of precipitating band against root precipitation time. The width law 

is presented in Fig. 1.3 as linear dependency position of precipitating band against width 

of this band. The spacing law can be simplest presented as linear dependency of band 

position difference against band position what is shown in Fig. 1.4. 

 

Fig. 1.2.  Time law verification for 1D model 

Rys. 1.2.  Weryfikacja zależności odstępów czasowych dla modelu 1D 
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Fig. 1.3.  Width law verification for 1D model 

Rys. 1.3.  Weryfikacja zależności grubości wzorców dla modelu 1D 

 

 
Fig. 1.4.  Spacing law verification for 1D model 

Rys. 1.4.  Weryfikacja zależności odstępów między wzorcami dla modelu 1D 

All three figures contains linear dependency. The R-square parameter informs about 

good data fir to linear function. Model can be interpreted as good description of 

precipitation Liesegang rings in one dimension. 

2D model 

Two dimensional model was analyzed by using described geometry and parameters to 

predict creation of rings. Diffusion process occurs in both x and y coordinates which 

makes whole prediction faster. It was needed to shorten experiment time. The used 

solubility rate constant is greater than in 1D model cause of higher initial concentration 

of substrates and to avoid local supersaturation. The diffusion coefficients have to differ 

from each other to avoid continously precipitation of product caused by process 

happening in both dimensions. 
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Fig. 1.5.  Predicted bands in 2D model 

Rys. 1.5.  Wzorce przewidziane modelem 2D 

Fig. 1.5 contains predicted rings in two dimensional circular geometry. The bands which 

can be interpreted as good precipitated product were marked. Outside precipitated 

product cannot be interpreted as ring because of high initial concentration of electolytes. 

The seventh ring is not completely continuous but still can be interpreted as a ring since 

it is well visible. The inner bands cannot be interpreted as Liesegang ring because the 

concentration of product is low (may be not noticeable). In Tabele 1.3 parameters of 

precipitated bands with precipitation time are presented. 

Table 1.3  

Predicted bands in 2D model 

band no. position R [mm] width [mm] time [s] 

1 8.54 0.4 840 

2 7.87 0.4 1380 

3 7.2 0.38 1980 

4 6.58 0.35 2700 

5 5.99 0.32 3540 

6 5.43 0.31 4440 

7 4.84 0.31 5520 
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Model was verified against time law (Fig. 1.6), width law (Fig. 1.7) and spacing law 

(Fig. 1.8). The model well describes the two-dimensional diffusion process – all laws 

verifications fits to linear dependency. Analogously to 1D model, values of  

R-square parameter were shown on figures. 

 

Fig. 1.6.  Time law verification for 2D model 

Rys. 1.6.  Weryfikacja zależności odstępów czasowych dla modelu 2D 

 
Fig. 1.7.  Width law verification for 2D model 

Rys. 1.7.  Weryfikacja zależności grubości wzorców dla modelu 2D 

 
Fig. 1.8.  Spacing law verification for 2D model 

Rys. 1.8.  Weryfikacja zależności odstępów między wzorcami dla modelu 2D 
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1.2. Conclusion 

We have validated our diffusion – precipitation modeling procedures by predicting 

values of paramteres of precipitation patterns, bands spacing, time occurrence of 

precipitation strips or rings and sizes of their widths. Parameters of the reactions 

obtained from the literature [5-8] were listed in Table 1.1 Predicted values versus 

experimental measurements are shown in Figures 1.2, 1.3, and 1.4 for 1D geometry and 

in Figures 1.6, 1.7 and 1.8 for 2D geometry of the reaction. One can see good correlation 

between predicted and measured values. 

Our system is ready for further development oncerning controlling times and shapes of 

precipitation patterns by boundary conditions. 
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NUMERICAL MODELING OF THE LIESEGANG PRECIPITATION 

PATTERNS WITH LINEAR AND RADIAL GEOMETRIES 

Abstract 

We present a computational study of reaction – diffusion – precipitation systems for two 

types of geometries, linear and radial. The elaborated numerical procedures allow 

validations of reaction – diffusion – precipitation reactions modeling assumptions and 

fitting model parameters to data. We used results of our study for comparing 

computational predictions of the obtained percipitation patterns with experimental 

measurements. The main contribution of our research is creating a stable computational 

environment allowing predicting outcomes of both 1D and 2D diffusion – precipitation 

chemical reactions. One area of application of the elaborated computational 
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environment designing presonalized, controlled drug release systems, where 

predicting/controlling shapes and positions of reaction fronts is of high importance. 

Keywords: Reaction – diffusion systems, precipitation, Liesegand patterns, Drug 

release, Numerical modeling. 

 


