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Abstract

We investigate the commutators of elements of the group UT(o0o, R)
of infinite unitriangular matrices over an associative ring R with 1 and
a commutative group R* of invertible elements. We prove that every
unitriangular matrix of a specified form is a commutator of two other
unitriangular matrices. As a direct consequence we give a complete char-
acterization of the lower central series of the group UT(co, R) including
the width of its terms with respect to basic commutators and Engel words.
With an additional restriction on the ring R, we show that the derived
subgroup of T(co, R) coincides with the group UT(co, R). The obtained
results generalize the results obtained for triangular groups over a field.

1 Introduction

Let R be an associative ring with 1 and R* be its group of invertible elements.
By T(oo,R) (and T(n,R)) we denote the group of upper triangular matrices
indexed by N x N (of size n x n, respectively), whose inverses are also upper
triangular. The requirement on the inverses is substantial here, as the inverse
of an upper triangular matrix is not necessarily an upper triangular matrix.
Ilustrative examples of upper triangular matrices over a noncommutative ring,
whose inverses are lower triangular can be found in [1, 2]. A triangular matrix
A (finite or infinite dimensional) is called unitriangular, if all its diagonal entries
are equal to 1. By UT(o0, R) and UT(n, R) we denote the groups of respectively
infinite N x N and finite n X n unitriangular matrices and by UT(co, m, R) and
UT(n,m, R) we denote their subgroups containing exactly all these matrices,
which have zero entries on the first m superdiagonals.

The properties of matrix groups T (oo, R), UT (00, R) and their finite dimen-
sional analogues have been intensively studied recently. We refer to [3, 4, 5, 6,
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7, 8, 9] (for infinite matrices) and [11, 12, 13, 14, 15, 16] (for finite matrices)
and references therein.

In the following 1., denotes the infinite identity matrix, i.e. the diagonal
matrix having ring unity 1 on the main diagonal. Similarly, 1;; denotes the
matrix (finite or infinite, depending on the context) with a unique nonzero
entry equal to 1 in the place (i,7). We also write 1,, for an n by n identity
matrix. The commutator [z,y] of elements z and y from a group G is defined
as a product [z,y] = 7y~ lay.

The main result of our paper concerns commutators in UT(co, R).

Basic Theorem Let R be an associative Ting with 1, such that R* is com-

mutative. Then every matrix C € UT (oo, m, R), m = 1,2, ..., is a commutator

C = [A,B] of a matrix A € UT(co,m — 1, R) and the matriz B, such that
o0

B_l = 100 + Z 17;’7;4,1.
n=1

We note that ring R with commutative R* need not to be commutative itself.
The standard example of a noncommutative ring R with commutative R* is the
free associative algebra K {(x,y) in noncommuting variables z, y over a field K.
For other examples we refer to [17, 18, 19, 20, 21].

The above theorem has few important consequences, which we discuss in
detail in the last part of our paper. In particular, it has direct implications on
the structure of the lower central series of groups T(oco, R) and UT (o0, R) and
on the respective width of their terms.

The lower central series of a group G is the (possibly infinite) series of sub-
groups

G =m(G) 2 7%(G) > ..,

defined recursively with v;41(G) = [v:(G), G], where for two subgroups H; and
H, of G by [Hy, Hs] we denote the subgroup generated by all commutators
[h1,ho] such that hy € Hy,hy € Hy (see [22]). We may also regard these
terms as subgroups generated by all values of the so-called basic commutators
ci(x1,x2, ..., 2;), where ¢1(x1) = x1 and ¢;p1(x1, .o, Tip1) = [ci(@1, o0y T), Tig]
(a value of a word is obtained by substituting all letters by elements of G and
calculating the resulting element of G). The subgroup v2(G) = [G, G] is called
the derived subgroup of G.

We mention here that the lower central series of the group UT(co, R) in the
case R is a field (|R| > 2) is determined in [5]. Our Basic Theorem allows for
generalization of this result to the group of infinite matrices over certain rings.

Corollary 1.1. If R is an associative ring with 1, such that R* is commutative,
then the lower central series of the group UT (0o, R) is the sequence of subgroups:

UT(00, R) > UT(c0,1,R) > UT(00,2,R) > ...,

where 71 (UT (oo, R)) = UT (00, R) and v;(UT(oco, R)) = UT(c0,k — 1,R) for
k > 1. Moreover, every element of the subgroup 'yk(UT(oo,R)) is a value of
the basic commutator cy,.



In fact it also follows from the Basic Theorem that all elements of subgroups
UT (o0, m, R) are values of the so-called Engel words e,,, each one defined only
on two lettersa where €2 (.I‘, y) = [.73, y] and e’m-i—l(x7 y) = [e’rn(xv y)a y]

Corollary 1.2. If R is an associative ring with 1, such that R* is commutative,
then every element of the subgroup ’yk(UT(oo, R)) s a value of Engel word ey.

Then we discuss the implications of the Basic Theorem on the structure of
the group of infinite triangular matrices T (oo, R).

It is known that if R = K, where K is a field of at least 3 elements, then
UT(o0, K) coincides with the derived subgroup [T(o0, K), T(o0, K)] of T(c0, K)
[5]. An analogous equality holds for the groups of finitely dimensional matrices
of size at least 3 by 3: [T(n,K),T(n,K)] = UT(n, K) [23]. In our paper we
extend this result to groups of matrices over a wider class of rings.

Since every diagonal entry of a triangular matrix from T(oco, R) is invertible,
simple computations show that the diagonal entries D;; of the commutator
D = [A, B] of two upper triangular matrices A and B are

D;,; = Ai_,ilBi_,ilAi,iBi,r
Hence, if R* is commutative, it follows that
[T(n,R),T(n,R)] € UT(n, R) for n>2,
[T(c0, R), T(c0, R)] € UT(00, R).

If we impose additional restriction on the ring R, we can prove the reverse
inclusion.

Theorem 1.3. Let R be an associative ring with 1, such that R* is commu-
tative and 1 is a sum of two invertible elements. Then [T (oo, R), T(co, R)] =
UT(oc0, R) and every element of UT (oo, R) is a product of at most two commu-
tators.

Moreover the lower central series of the group T(oco, R) is

7 (T(o0, R)) = T(0o, R), ~n(T(c0,R)) =UT(c0,R), for all n>1,
i.e it stabilizes on the group UT (oo, R).

The condition that 1 is a sum of two invertible elements holds if, for example,
2 € R*, because 1 = 24 (—1). It is clear that a ring with this property cannot
have a two element field as a factor ring. For other properties of such rings we
refer to [24, 25, 26].

Then we discuss a more restrictive case of R being a field and provide a
representation of any (infinite) unitriangular matrix as a commutator of one
diagonal and one unitriangular matrix in case the field is infinite. We also
indicate some direct implications of Theorem 1 on the lower central series of the
discussed groups of triangular matrices.

The Vershik-Kerov group GLy i (00, R) is a group of all invertible infinite
matrices with finite number of nonzero entries below the main diagonal (see



[8, 6]). Let n be a natural number. By GL(oco, n, R) we denote the subgroup of
GLy k (00, R) consisting of all matrices of the form

Gy | Gs
(St (1)
where G is n X n invertible matrix from a general linear group GL(n, R), G5 €

T(c0, R) and G3 is arbitrary matrix of proper size. Note that the subgroups
GL(0c0,n, R) form an ascending sequence, i. e. for all n > 1 we have

GL(o0,n, R) C GL(co,n + 1, R).

It is clear that
GLy (00, R) = |_J GL(00,n, R).
n>1

For a commutative ring R by SLy i (00, R) we denote the subgroup of GLy i (00, R)
consisting of all matrices of the form (1), where G is a matrix from the special
linear group SL(n, R) (n € N), and G5 € UT(c0, R).

Compiling Theorem 1 with results of [6], we characterize the derived sub-
group of the Vershik-Kerov group and improve the upper bound of the commu-
tator width of this group.

Theorem 1.4. Let K be a field such that |K| > 3. Then the commutator
subgroup of the group GLy g (00, K) coincides with the group SLy k (o0, K) and
every element of SLy i (00, K) is a product of at most 2 commutators.

Our proofs for the groups of infinite matrices over R may be directly refor-
mulated for the respective groups of finite matrices over R. In particular we
have:

Theorem 1.5. Let R be an associative ring with 1, such that R* is commutative.
Then

i) %(UT(n,R)) = UT(n, k, R) and every element of v (UT(n, R)) is a value
of the basic commutator cy.

il) Every element of v (UT(n, R)) is a value of the Engel word ey.
Moreover, if 1 is a sum of two invertible elements, then

iii) [T(n, R),T(n,R)] = UT(n, R) whenever n > 2.

iv) Every element of v2(T(2, R)) = UT(2, R) is a commutator.

v) Every element of v2(T(n,R)) = UT(n, R) with n > 2 is a product of at
most two commutators.

The remaining part of the paper is organized in two sections. In the first
section we give the detailed proof of the Main Theorem. Then in the other one
we discuss the implications of the Basic Theorem and prove the corollaries and
theorems, stated in the Introduction.



2 Proof of the Basic Theorem

For given m > 1 and a matrix C' € UT(co,m, R) we prove the result by
calculating the entries of the required matrix A € UT (oo, m — 1, R), for which
C = [A, B]. We find the entries of A employing induction on its columns.

We first rewrite the desired equality C = [A,B] as CA = B 'AB and
compare the matrices on both sides entrywise:

(CA)Z‘J‘ = (B_lAB)i,j, 1< J.
We denote for brevity L; ; = (CA); ; and P; ; = (B~'AB); ;. Then, keeping in
mind that B~' =1, + Y 1,41 we have:

n=1
k—1
Liivik = Aiivk+Ciivr+ > AiirsCitsiths
s=1
P, _ ¥ A B ; A B (2
itk = 2o AiivtBittivk + O Air1,ivtBitt itk
t=0 t=1
Liivk = Piiyk.

Direct calculations show that the entry A;;i; reduces on both sides of the
equation (2). However from (2) for k > 1 we may determine:

k—1 k—1 k—1
Aiviive = Ciivrt E AiivsCitsith— E AiivtBittive+ g Aig1ivtBitt itk
s=1 t=0 t=1

(3)
and it is clear that every entry A;yi1,, 7 > ¢+ 1, is computable whenever the
matrices B, C and all entries A; ; and A;4 ; for j < i+ k are known.

For a particular solution to C' = [A, B] we have to choose the first row of A.
In fact an arbitrary choice would provide a solution, however for the statement
of our theorem we need to find A in UT(co,m — 1, R). Thus we set A;; =0
for all 1 < j < m and choose all other entries A; ;, j > m arbitrarily. Assume
now that A; ;4 = 0 for all i <n and 0 < k < m. Then using (3) with ¢ = n for
k < m we have:

k—1 k—1 k—1
An+1,n+k = On,n+k+z An,n+scn+s,n+k'*z An,n+tBn+t,n+k+Z An+1,n+tBn+t,n+k~
s=1 t=0 t=1
Recall that (), 4 = 0 for all £ < m. In the case of k > 1 we have:
k—1 k—1

An-l—l,n-‘rk = - § An,n+tBn+t,n+k - § An+1,n+tBn+t,n+k7
t=1 t=2

and in particular we recursively find the entries:

An+1,n+2 = _An,n+an+l,n+2 = 07

An+1,n+3 - _An,n+an+1,n+3 - An,n+2Bn+1,n+3 - An+1,n+23n+2,n+3 = 07
k—1 k—1

An+1,n+m = - Z An,n+tBn+t,n+k - Z An+1,n+tBn+t,n+k =0.
t=1 t=2



By induction we have A € UT (00, m — 1, R) as desired, and we find every entry
of the infinite matrix A in finitely many steps. Thus, the theorem follows. O

We also note that if C' is not contained in UT(co,m + 1, R), then we can-
not choose A in UT(co,m, R), as in this case the commutator [A4, B] lies in
UT(co,m + 1, R).

3 Implications of the Basic Theorem

We start with the direct implications of the Basic Theorem on the structure
of the lower central series of the group UT(co, R). Namely, since every matrix
from UT (00, m, R) is a commutator of a matrix B from UT(co, R) and a matrix
from UT(co,m — 1, R) then we have the following inclusion:

UT(co,m, R) C [UT(co,m — 1, R), UT(c0, R)].

As the inverse inclusion is obvious, we obtain the statement of Corollary 1.
Moreover, if A is an arbitrary matrix from ~,,(UT (o0, R)) = UT(oc0,m, R)
then by the Basic Theorem

A =[A,,B],

where 4; € UT(co,m — 1, R). Now, applying again the Main theorem to the
matrix A; we write

A= [AlaB} = HA27B]7B = [A27BaB}v A2 € UT(oo,m— 23R)

We repeat this reasoning by choosing consequently the matrices A; € UT(oco, m—
i, R) and finally we obtain:

A= [Al,B] = [A27B7B] = [Ag,B,B,B] =..= [Am,B,B, ,B} = €m+1(Am,B)

with A, € UT(co, R). We have shown that every matrix in UT (oo, m, R) is a
value of the Engel word e,, 1 as stated in Corollary 2.

3.1 Proof of Theorem 1

Let R be an associative ring with unity 1, such that R* is commutative and
the unity can be decomposed to a sum of two invertible elements: 1 = £ + 7,
where 3,7 € R*.

We follow the ideas of Theorem 2 in [6].

Let A = (a;5) € UT (00, R). We put

o0
C=1a+) (1) a1y med2y,,
i=1
and a diagonal matrix

D= Z,Y(hLl) mod 211_?2_

i=1



We observe that if [C, D] = U = (u,;) then direct calculations show that
Ui i4+1 = Q4 i+1 for all 7 € N. HeIlCG7

A=U-(UtA),

where U714 € UT (o0, 1, R) and by the Basic Theorem U ! A is a commutator.
Thus A is a product of two commutators contained in [UT (o0, R), T (oo, R)] and
we have the following inclusions:

[T(c0, R), T(o0, R)] 2 [UT(00, R), T(c0, R)] 2 UT (00, R).
As the reverse inclusion [T(o0, R), T(o0, R)] € UT(o0, R) is obvious, we have
[T(00, R), T(c0, R)] = UT (00, R),
and the lower central series of T(oo, R) is

71(T(00, R)) = T(c0, R)
vi(T (o0, R)) = [1i—1(T(00, R)), T(c0, R)] = UT (00, R), for i> 1.

This completes the proof of Theorem 1. O

We note that if R = K, where K is a field, one can prove a stronger result
that every infinite unitriangular matrix A € UT (oo, K) is a commutator of two
infinite triangular matrices (see [5]). Given a unitriangular matrix, one can
construct triangular matrices, such that their commutator is equal to the given
matrix. However, this construction does not allow for none of these matrices
to be fixed. We prove that if K is infinite, one can fix one of the matrices by
giving another solution to the commutator equation in T(o0, K).

Theorem 3.1. Let K be an infinite field. Then there exists an infinite diagonal
matriz D with pairwise distinct diagonal entries such that every unitriangular
matriz A € UT (oo, K) is commutator of D and another unitriangular matriz.

Proof. We first note that since K is infinite, then there exists an infinite diagonal
matrix D with pairwise distinct diagonal entries. We fix D arbitrarily. Now we
construct a unitriangular matrix U € UT(o0, K), such that A = [U, D]. The
construction is inductive with respect to the consecutive columns of U.

Given an infinite triangular matrix A € T(oco, R) we will denote its top-left
corner block by A(n). Obviously A(n) € T(n, R).

We start with A(2) = 12 +alq2, a € K and put U(2) = 12 + ulio €
UT, (K), such that u = (DI%DQQ —1)~ta. Direct calculations show that A(2) =
U(2), D).

Now, let us assume that for a given n we found U(n) such that A(n)
[U(n), D(n)]. Consider matrix A(n+ 1) € UT,+1(K):

a(n+1)=< Agn) ?)



where A(n) € UT(n, K), a™
1)

= (ay,a2,...,a,) € K™ and 0 € K™ is a zero vector.
We define U(n+1) e UT(n+1

, K) as follows:

U(n+1)( UE)”) 11‘>,

where U(n) is a matrix determined in the inductive assumption an u? =

(u1,ug, ..., up) € K™ Then we have:

[U(TL), D(n)] U(n)il(D(n)ian—H,n-i-l - ]-n)@ ) ,

[Un+1),D(n+1)]= ( 0 1

and for the equality A(n+ 1) = [U(n + 1), D(n + 1)] it suffices that
a=U""(n) (D7 () Dnj1ms1 — Ln)u.

By the assumptions on matrix D the matrix D~!(n)D;4+1 541 is invertible and

so is the matrix U~ (n)(D~Y(n)Dyy1.nt1 — 1,). Hence we may put

_ _ -1
u= (U 1(”)(D 1(”)Dn+1,n+l - 1n)) a.

Then A(n+1) = [U(n+ 1), D(n + 1)] as desired. Hence we may inductively

compute every entry of the infinite matrix A in finitely many steps and the

theorem follows. O O

From Theorem 4 it follows immediately:

Corollary 3.2. If K is an infinite field then every infinite unitriangular matriz
is an m-Engel word in T(oo, K) for every m > 2.

The results discussed above can be applied also to improve the statements
of Theorem 1 in [6]. For the proof of the next theorem we assume that R = K
is a field.

3.2 Proof of Theorem 2

Since GLy (00, K) is a sum of the ascending chain of subgroups GL (oo, n, K),
then for every two matrices A, B € GLy (00, K) we find n such that A, B €
GL(oc0,n, K). Let

_ ([ G1]Gs _( Hi| Hj
A= (GHEr). m= ()
Then [ H
G, Hy Gy
A B]= -
[7] ( 0 [G27H2]>a

where [G1, Hy] € SL(n, K), [G2, Hz] € UT(00, K) and G4 is a matrix of respec-
tive dimensions. This clearly implies the inclusion

[GLy k (00, K), GLy i (00, K)] C SLy i (00, K).



Now we prove the reverse inclusion. Simple calculations show that every matrix
in SLy g (00, K) can be decomposed as a product:

Gi |Gy \ _ ([ 1.]|Gs Gi| 0
0[Gy ) \ 0]Gy 0 |1
In [27] it was shown (Theorems 1 and 2) that in the case K # o, F3, then every

element of SL(n, K) is a commutator. It is clear that this statement can be
generalized to all infinite matrices of the form

G| 0
0 |15

where G € SL(n, K). Hence there exist matrices Hy, Hy € GL(n, K) such that:

(o he) = (o) (o)

Moreover, from [5] we have that
1, | Gs
0 |G

Gy | Gs
0 | Ga

is a product of at most two commutators and

is a commutator. Thus

SLVK(OO,K) Q [GLVK(OO,K),GLVK(OO,K)].

This completes the proof. O

3.3 Corollaries

Due to the natural embeddings of the groups UT(n, R) and T(n, R) into
UT(o0, R) and T(oco, R), the statements of Theorem 3 follow directly from cal-
culations performed in proofs of Theorems 1 and 2.

It is worth mentioning that Theorem 3 generalizes the results on the groups
of finite dimensional unitriangular matrices and finite dimensional triangular
matrices over a field, presented in [12] and [16] to the case of respective ma-
trix groups over any associative ring R with unity such that the group R* is
commutative. This generalization cannot be improved further.

3.4 References

References

[1] E. Asplund, Inverses of matrices {a; ;} which satisfy a; ; = 0 for j > i +p,
Math. Scand. 7(1959), p. 57 — 60



2]

[15]

[16]

W. Holubowski, An inverse matrix of an upper triangular matrix can be
lower triangular, Discuss. Math. General Algebra and App. (2002), 22, p.
161-166

R. Stowik, On one property of normal subgroups of UT s (R), Linear Alge-
bra and its Applications 437 (2012), p. 2300-2307

R. Stowik, The lower central series of subgroups of the Vershik-Kerov
group, Linear Algebra and its Applications 436, 7 (2012), p.2299-2310

R. Stowik, Bijective maps of infinite triangular and unitriangular
matrices preserving commutators, Linear and Multilinear Algebra,
DOI:10.1080,/03081087.2012.728214

C. K. Gupta, W. Hotlubowski, Commutator subgroup of Vershik-Kerov
group, Linear Algebra and its Applications 436, 11 (2012), p.4279-4284

V. Snaith, The upper triangular group and operations in algebraic K-
theory, Topology 41 (2002), no. 6, 1259-1275.

A. M. Vershik, S. V. Kerov, On an infinite-dimensional group over a finite
field, Funct. Anal. Appl. 32 (1998), no. 3, 147-152.

A. M. Vershik, S. V. Kerov, Four drafts on the representation theory of the
group of infinite matrices over a finite field, J. Math Sci. (N.Y.) 147 (2007),
no. 6, 7129-7144.

V. Bardakov, A. Vesnin, M.K. Yadav, Class preserving automorphisms of
unitriangular groups, Internat. J. Algebra Comput. 22 (2012), no.3, 17pp.

A. Bier, On Solvability of Engel Equations In the Group of Triangular
Matrices Over a Field, Linear Algebra and its Applications (2012) DOI:
10.1016/j.1aa.2012.10.009

A. Bier, The width of verbal subgroups in groups of unitriangular matrices
over a field, Int. J. Alg. Comput. 22, 3 (2012), 1250019, 20 pp.

F. Kuzucuoglu, Isomorphisms of the unitriangular groups and associated
Lie rings for the exceptional dimensions, Acta Appl. Math. 85 (2005), no.1-
3, 2009-213.

T.Le, Counting irreducible representations of large degree of the upper
triangular groups, J. Algebra 324 (2010), no. 8, 1803-1817.

M. Loukaki, Counting characters of small degree of upper triangular groups,
J. Pure Appl. Algebra 215 (2011), no.2, 154-160.

Yu. V. Sosnovsky, On the width of verbal subgroups of the groups of tri-
angular matrices over a field of arbitrary characteristic, arXiv:1201.6513v1
[math.GR]

10



[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

J.Cohen, K.Koh, The group of units in a compact ring, J. Pure Appl.
Algebra 54 (1988), no.2, 167-179.

K. E. Eldridge, I. Fisher, D.C.C. rings with a cyclic group of units, Duke
Math. J. 34 (1967), 243-248.

D. Khurana, G. Marks, A. K. Srivastava, On Unit-central rings, Advances
in ring theory, Trend in Mathematics, Springer 2010, 205-212.

W.K. Nicholson, H. J. Springer, Commutativity of rings with abelian or
solvable units, Proc. Amer. Math. Soc. 56 (1976), no. 1, 59-62.

W. K. Nicholson, Semiperfect rings with abelian group of units, Pacific J.
Math. 49 (1973), 191-198.

D.J.S. Robinson, A course in the theory of groups, Springer-Verlag, New
York 1982.

M. I. Kargapolov, Yu. I. Merzljakov, The fundamentals of group theory,
Springer-Verlag, New York 1979.

M. Henriksen, Two classes of rings generated by their units, J. Algebra 31,
(1974), 182-193.

D.Khurana, A.K. Srivastava, Right self-injective rings in which each ele-
ment is sum of two units, J. Algebra and its Appl. 6 (2007), no. 2, 281-286.

R. Raphael, Rings which are generated by thei units, J. Algebra 28 (1974),
199-205.

R.C. Thompson, Commutators in the special and general linear groups,
Trans. Amer. Math. Soc. 101 (1961) no. 1, 16-33.

11



