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Abstract

We consider five known problems, show that three of them are
equivalent, and all of them have an affirmative answer in the class
of locally graded groups. Outside of this class a counterexample is
known to only one problem.

1 Preliminaries

A group G is called locally graded if every nontrivial finitely generated sub-
group in G has a proper subgroup of finite index. Locally graded groups
were introduced to study groups, that do not have finitely generated infinite
simple sections, and to avoid the groups which need methods of Adian and
Olshanskii. The class of locally graded groups contains for instance all resi-
dually finite groups, all locally soluble groups, all infinite locally finite simple
groups which are neither locally soluble nor residually finite.

We denote by Be the restricted Burnside variety which consists of all
locally finite groups of exponent dividing e (for details see [1]). By Nc we
denote the nilpotent variety of nilpotency class c.

A relation u(x, y) = v(x, y) is called positive if u, v are written without
inverses of variables and is of degree less than or equal to n, if the length
of words u, v is not greater than n (|u|, |v| ≤ n). If G does not contain a
free non-abelian semigroup, we say that G is a �F -group. If every pair of
elements in G satisfies some positive relation of degree less than or equal to
n, then we say that G is a |�F|-group of bound n. If every pair of elements
in G satisfies the same positive relation we say, that G satisfies a positive
law. We note that each positive law implies a binary positive law and if G
satisfies a positive law, then the variety, it generates, has a basis of positive
laws [2].
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2 Problems

In 1953 Mal’cev [3] proved that nilpotent groups satisfy positive laws. For
more then 40 years the following problem was open:

Problem 1: Must every group satisfying positive laws be a periodic
extension of a nilpotent group?

An affirmative answer was found for linear, soluble, residually finite groups,
however in 1996 Ol’shanskii and Storozhew proved the existence of groups
satisfying positive laws, which are not periodic extensions of locally soluble
groups [4]. This gives a negative answer to Problem 1 in general, however
we show in Theorem 2, that in the class of locally graded groups the answer
is affirmative.

A group G is called n-Engel if it satisfies the commutator law [x, y, y, ..., y]=1
where y is repeated n times. The following question was posed by Shirshov
in 1963 ([6], 2.82):

Problem 2: Does every n-Engel group satisfy a positive law?

The problem is still open in general for n > 4, however by combining known
results we can see that it has an affirmative answer in the class of locally
graded groups.

Theorem 1 Every locally graded n-Engel group satisfies a positive law.

Proof It is shown by Kim and Rhemtulla [5], that every locally graded n-
Engel group G is locally nilpotent. Then by a result of Burns and Medvedev
[10], G is contained in a variety NcBe ∩BeNc, where c and e depend on n
only. By [3] the nilpotent variety Nc satisfies some binary positive law, say
Pc(x, y) = Qc(x, y). Then the variety NcBe satisfies the law Pc(x

e, ye) =
Q(xe, ye), which finishes the proof. 2

We show that the following open problems are equivalent and have an affir-
mative answer in the class of locally graded groups.

A group G is called n-collapsing if for every n-element subset S ⊆ G, the
inequality |Sn| < nn holds. A group is called collapsing if it is n-collapsing
for some n. In his paper [7], A. Shalev posed the following question:

Problem 3: Does every collapsing group satisfy a positive law?

An affirmative answer was given for soluble and residually finite groups.

Let Gω denote a cartesian power of a group G, and G∗ denote an ultrapower
of G modulo a fixed nonprincipal ultrafilter over natural numbers. The ul-
trapower G∗ is an image of the cartesian power Gω under the congruence
defined by the nonprincipal ultrafilter. We note the following: If Gω has
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no free non-abelian subsemigroup then G satisfies a positive law, because if
G does not satisfy any positive law, we enumerate binary relations and for
i-th relation find a pair ai, bi ∈ G which does not satisfy this relation. Hence
elements a = (a1, a2, ...), b = (b1, b2, ...) ∈ Gω must generate a free semigroup.
A question arises, whether the same is true for G∗ instead of Gω:

Problem 4: Let G∗ have no free non-abelian subsemigroup. Must
G satisfy a positive law?

A group G satisfies a finite disjunction of positive relations if every pair
of elements in G satisfies some positive relation in a finite set of relations
{ui(x, y) = vi(x, y), i = 1, 2, ...,m}. In [8] M. Boffa posed the question,
whether a group satisfying a finite disjunction of positive relations, must
satisfy a positive law. Since for each n there exists only finitely many binary
relations of degree less than or equal to n, we conclude that G satisfies a
finite disjunction of positive relations if and only if G is a |�F|-group. So the
Boffa question can be formulated as:

Problem 5: Does every |�F|-group satisfy a positive law?

To prove the equivalence of Problems 3-5 we need

Lemma 1 The following classes of groups coincide:
(i) The class of |�F|-groups,
(ii) The class of collapsing groups,
(iii) The class of groups, the nonprincipal ultrapowers of which are �F-groups.

Proof (i) → (ii) We show that a |�F|-group of bound n is 2n-collapsing,
that is for any set S = {s1, s2, ..., s2n} in G the inequality |S2n| < (2n)2n

holds. To prove the inequality, it suffices to find two equal words si1· · · si2n
and sj1· · · sj2n in S2n. By assumption elements s1, s2 satisfy some relation
u(x, y) = v(x, y) where |u|, |v| ≤ n, |u|, |v| need not be equal. The relation
u = v implies uv = vu, where |uv| = |vu|. If |uv| = 2n, we get two required
equal words u(s1, s2)v(s1, s2) and v(s1, s2)u(s1, s2) in S2n. If |uv| < 2n,
( |uv| = 2n−k, say), then we use the relation xkuv = xkvu, which gives equal
words sk1u(s1, s2)v(s1, s2) = sk1v(s1, s2)u(s1, s2), and hence |S2n| < (2n)2n.

(ii)→ (i) LetG be an n-collapsing group, then for each subset S = {s1, ..., sn}
in G, it holds |Sn| < nn. So there exist two equal words si1 · · · sin = sj1 · · · sjn .
To find a relation for any fixed a, b ∈ G, we take S = {a, ab, ab2, ..., abn−1}.
The relation we obtain for a, b is of degree less or equal to n2. So G is a
|�F|-group of bound n2.

(i) → (iii) Let G be a |�F|-group of bound n. We assume that elements
α∗, β∗ generate a free 2-generator subsemigroup in an ultraproduct G∗ and
show that it gives a contradiction. Let α = (a1, a2, ...), β = (b1, b2, ...) be
some pre-images of α∗, β∗ in Gω, respectively. There is only finitely many,
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say M , binary relations of degree less or equal to n. We enumerate them by
naturals 1, 2, ...,M . LetAk ∈ N denote a subset of indices such that for i ∈ Ak

the pair ai, bi satisfies the k-th relation. Obviously N = A1 ∪ A2 ∪ ... ∪ AM .
If the semigroup generated by α∗, β∗ is free, then no Ak is in the ultrafilter.
Thus by the definition, all A′k are in the ultrafilter, so does their intersection.
Hence Ø= A′1 ∩ A′2 ∩ ... ∩ A′M is in the ultrafilter, which is the required
contradiction.

(iii) ↔ (i) Let G∗ be a �F -group. If assume that G is not |�F|-group, then
for every natural k there exists a pair ak, bk of elements in G which does
not satisfy any relation of degree ≤ k. We use these pairs to define α =
(a1, a2, ...), β = (b1, b2, ...) in Gω. Let α∗, β∗ be images of α, β in the group
G∗, and let u = v be any fixed binary relation. By construction, the subset I
of indices i for which ai, bi satisfy the relation u = v is finite, and hence I is not
in the ultrafilter. So u(α, β) and v(α, β) are not equal modulo the ultrafilter
and then u(α∗, β∗) 6= v(α∗, β∗). Hence α∗, β∗ do not satisfy any relation and
must generate a free subsemigroup in G∗, which is a contradiction. 2

Corollary 1 It follows from Lemma 1, that Problems 3-5 are equivalent.

We show now that in the class of locally graded groups Problem 1 has an
affirmative answer.

Theorem 2 Every locally graded group satisfying positive laws is a periodic
extension of a nilpotent group. In particular, every locally graded group G
satisfying a positive law of degree n lies in the variety NcBe, where c and e
depend on n only.

Proof Let G be a locally graded group. If G satisfies a positive law of degree
n, then G is a |�F|-group of bound n, and hence, by Lemma 1, G is collapsing.
It follows now from results of Kim and Rhemtulla ([5] Theorem A and Lemma
3), that G must be locally - (polycyclic-by-finite). Since G is soluble-by-finite
and satisfies a positive law of degree n, then by ([9], Theorem B), G must
be periodic extension of a nilpotent group. In particular G ∈ NcBe, where
c and e depend on n only, which finishes the proof. 2

To show that Problems 3-5 have affirmative answers in the class of locally
graded groups it suffices, in view of Corollary 1, to prove:

Theorem 3 Every locally graded |�F|-group G of bound n satisfies a positive
law. Moreover G lies in the variety NcBe, where c and e depend on n only.

Proof Let G be a locally graded |�F|-group of bound n, then by Lemma 1,
G is 2n-collapsing. Let H be a two-generator subgroup in G. Since H also
is locally graded and collapsing, then by ([5] Theorem A and Lemma 3), H
contains a polycyclic normal subgroup N of finite index. Then by the result
of Rosenblatt ([11], 4.12), the finitely generated soluble �F -group N must be
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nilpotent-by-finite. Hence H is also nilpotent-by-finite, and then by [12], H
is residually finite.
Since H is 2n-collapsing and residually finite, then by the result of Shalev
([7], Theorem A′), H belongs to the product-variety NcBe, where c, e de-
pend on 2n only. By [3], every group in this variety satisfies some positive
law Pc(x

e, ye) = Qc(x
e, ye) whose degree depends on c, e only, and hence de-

pends on n only. Since H is an arbitrary two-generator subgroup, then the
whole group G must satisfy the positive law Pc(x

e, ye) = Qc(x
e, ye). Now by

Theorem 2 the statement follows. 2

From above Theorems we have

Corollary 2 Let G be a locally graded group with one of the properties:
G is an n-Engel group; G is a collapsing group; a nonprincipal ultrapower of
G does not contain a free non-abelian semigroup; G is a |�F|-group . Then
G is nilpotent-by-(locally finite of finite exponent).
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