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Abstract

A problem, we consider, is equivalent to the one posed in 1981

by G. Bergman: Let G be a group and S a subsemigroup of G

which generates G as a group. Must each identity satisfied in S

be satisfied in G? The first counterexample was found in 2005

by S. Ivanov and A. Storozhev. It gives a negative answer to

the problem in general. However we show that the problem has

an affirmative answer for locally residually finite groups and for

locally graded groups containing no free noncyclic subsemigroups.
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1. Introduction

An identity in a semigroup has a form u(x1, ..., xn) = v(x1, ..., xn) where

the words u and v are written without inverses of variables. Such an
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identity in a group is called a semigroup identity. It is clear that abelian

groups and groups of finite exponent satisfy semigroup identities.

A subsemigroup S of a group G is called a generating semigroup if

elements of S generate G as a group. The following question is equivalent

to the one posed by G. Bergman in [1].

GB-problem Let G be a group and S a generating semigroup of G. Must

each identity satisfied in S be satisfied in G?

Another formulation of this problem is whether every proper variety

of semigroups is closed with respect to groups of fractions ([16], Question

11.1). The GB-problem can be approached from two sides. One can

concentrate either on the identities or on the properties of the group G.

We say that an identity u = v is transferable if while satisfied in S, it is

necessary satisfied in G. Thus the problem is whether every semigroup

identity is transferable. It is clear that the abelian identity is transferable.

In 1986 the problem was discussed in G. Bergman’s ”Problem Seminar”

in Berkeley [2]. It was shown that the identity xnyn = ynxn is transferable

for n = 2. The proof of transferability for n > 2 was found in 1992 [9].

As to another approach, it is known ([3], Theorem D) that for soluble-

by-finite groups the GB-problem has an affirmative answer.

The first example of a non-transferable identity was given in 2005 by

S. Ivanov and A. Storozhev [8]. They found a counterexample-group G

(in fact a family of them) with a generating semigroup S such that the

group G does not satisfy an identity holding in S (the identity is similar

to that introduced by A. Yu. Ol’shanskii in [13]). So the GB-problem

has a negative answer in general. The problem of describing the class of

counterexample-groups is now open. We show (Theorem 1) that looking

for the counterexample-groups it suffices to consider only the groups with
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relatively free generating semigroups and that each such a group (with

not less then three generators) either contains a free noncyclic semigroup

or satisfies a semigroup identity (Theorem 2). We show also (Theorem 3)

that there is no counterexample-group in the large class of locally graded

groups with no free noncyclic subsemigroups.

The class of locally graded groups was introduced in 1970 by Černikov to

avoid groups such as the infinite Burnside groups or Ol’shanskii-Tarski

monsters. A group G is called locally graded if every nontrivial finitely

generated subgroup of G has a proper subgroup of finite index. We note

that all locally or residually soluble groups and all locally or residually

finite groups are locally graded. The class of locally graded groups is

closed for taking subgroups, extensions and cartesian products.

On the map of Groupland (below) the region of locally graded groups

is marked as the inner grey ellipse. The left half of Groupland denoted by

symbol ”no F2” contains groups with no free noncyclic subsemigroups.

In the right half there are groups with free noncyclic subsemigroups. The

north part contains groups which satisfy no identities. The south-west

sector contains groups which satisfy semigroup identities. The dashed

ellipse contains residually finite groups. There are regions of groups of

different types of growth, polycyclic groups and others.

It is visible that the class of locally graded groups satisfying semigroup

identities consists of groups which are extensions of nilpotent groups by

locally finite groups of finite exponent [3], and that not all groups of

intermediate growth are residually finite [6] as it was conjectured. More

information on Groupland can be found in [12] and on the Internet.
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GROUPLAND

We prove that for locally graded groups with no free noncyclic subsemi-

groups (the left half of the inner grey ellipse) and for residually finite

groups (the region inside the dashed ellipse) the answer to the GB-

problem is affirmative.

2. Groups with generating semigroups satisfying identities

Let S be a generating semigroup of a group G. The statements of the fol-

lowing proposition hold if S has no free noncyclic subsemigroup, however

we need it in a weaker form.

Proposition 1 If a generating semigroup S of a group G satisfies a

nontrivial identity, then (i) for every s, t ∈ S there exist s′, t′ ∈ S such

that ss′ = tt′ (left Ore condition), (ii) G = SS−1, (iii) for every g, h ∈ G

there are s, t, r∈S such that g = sr−1, h = tr−1.
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Proof A nontrivial n-variable identity in S implies a nontrivial 2-va-

riable identity if replace the i-th variable by xyi. By the cancellation

property, it may be assumed as xu(x, y) = yv(x, y). For x=s, y= t, s′:=

u(s, t), t′:=v(s, t), the statement (i) follows. Now since each g ∈ G is a

product of elements in S∪S−1, and by (i) for every s, t ∈ S, s−1t = s′t′−1,

the statement (ii) follows. Since G = SS−1, for every g, h ∈ G there exist

a, b, c, d ∈ S such that g = ab−1, h = cd−1. By (i) there exist b′, d′ ∈ S

such that bb′ = dd′. We denote r := bb′ = dd′ and s := ab′, t := cd′.

Then g = ab−1 = ab′b′−1b−1 = sr−1 and h = cd−1 = cd′d′−1d−1 = tr−1,

which gives (iii). 2

Similarly, by using the last letters of the identity we can also prove

that G = S−1S. Then by Theorem 1.25 in [4] we obtain the following

Corollary 1 A group G with a generating semigroup S where S satisfies

a nontrivial identity is uniquely defined (up to an isomorphism) by the

semigroup S.

For a group G with a generating semigroup S satisfying a nontrivial

identity we shall obtain the natural presentations S ∼= F/ρ and G ∼=
F/Nρ where F is a free group of appropriate rank, freely generated by

a set X ={xi, i ∈ I}, and F – a free semigroup, generated by the same

set X. As in ([5] 12.8) for a congruence ρ on F we denote by Aρ the

following set

Aρ :={ ab−1 | (a, b)∈ρ } ⊆ FF−1.

By ngpAρ we denote the normal closure of the set Aρ in F . In further

text var(S) and var(G) denote the variety of semigroups and the variety

of groups generated by S and G respectively.
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Proposition 2 (cf [5] Construction 12.3 for a semigroup S)

Let G be a group with a generating semigroup S.If S satisfies a nontrivial

identity then there exists a congruence ρ on F such that S ∼= F/ρ, and for

the normal subgroup Nρ := ngpAρ in F, G ∼= F/Nρ and Nρ∩FF−1 = Aρ.

Proof Let the semigroup S have a generating set {si, i ∈ I} and let

the set X have the same cardinality. In the following diagram the maps

X → F → F are the embeddings and β sends xi → si.

X

↓
F/ρ ∼= S

β←− F −→ F

γ↘ ↙ρ#
1

F/Nρ

(1)

The map β defines a congruence ρ on F , such that S ∼= F/ρ. Namely,

(u(xi), v(xi)) ∈ ρ if and only if u(si) and v(si) are equal in S. The

generators si correspond to the congruence classes of xi under ρ.

The congruence ρ on F generates a congruence ρ1 on F with the

equivalence class of the unity equal to the normal subgroup Nρ :=ngpAρ.

The cosets of Nρ are the equivalence classes of ρ1 in F . Hence the congru-

ence ρ1 defines the natural homomorphism ρ#
1 : F →F/Nρ. It is shown

in ([5], p. 291), that the map γ which sends each si to the coset xiNρ,

defines a homomorphism γ : S → F/Nρ and Sγ generates F/Nρ as a

group. By Theorem 12.4 of [5] γ is the embedding, hence S is isomorphic

to Sγ which is the generating semigroup of F/Nρ. Now by Corollary 1

we have G ∼= F/Nρ.

By Corollary 12.8 in [5] for a, b ∈ F , ab−1∈ ngpAρ implies ab−1∈ Aρ
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which can be written as FF−1∩ ngpAρ⊆Aρ. The opposite inclusion is

clear which finishes the proof. 2

We say that a subset of elements in F is EndF -invariant if it is

invariant to all mappings X→F .

Corollary 2 If M is an EndF-invariant normal subgroup of F, then

the set FF−1∩ M defines a fully invariant congruence µ on F such that

Aµ = FF−1∩ M . 2

The following theorem shows the importance of the relatively free

generating semigroups.

Theorem 1 Let G have a generating semigroup S. There exists a group

G0 with a generating semigroup S0 such that S0 is free in var(S), and

var(G0)= var(G).

To prove this theorem we need the following

Lemma 1 Let M, N be subgroups and A a subset of F . If M ⊇ N then

AN ∩M =(A ∩M)N. (2)

Proof The inclusion ”⊇” is clear. Let t ∈ AN ∩ M , then t = ar for

some a ∈ A, r ∈ N . Since t, r ∈ M we have a = tr−1 ∈ A ∩ M . So

t=ar ∈ (A ∩M)N , which finishes the proof. 2

Proof of Theorem 1 Let S be a generating semigroup of a group G,

and var(S) be the variety of all semigroups. A free group in var(G) ge-

nerating var(G) satisfies no semigroup identity and has a free generating

semigroup which is also free in var(S). This proves the existence of G0.

Let now var(S) be a proper variety of semigroups. By Proposition 2

there exists a congruence ρ on F such that S ∼= F/ρ, and G ∼= F/Nρ
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for Nρ :=ngpAρ. We denote by ρ0 the biggest fully invariant congruence

on F contained in ρ. Then Aρ0 is the biggest EndF -invariant subset in

Aρ. The semigroup S0 := F/ρ0 is free in var(S) with a free generating

set {s̄i, i ∈ I}, where s̄i are the congruence classes of xi under ρ0.

If repeat the construction (1) for the semigroup S0 with the map

β̄ : xi → s̄i we obtain the above congruence ρ0, the normal subgroup

N0 :=ngpAρ0 such that N0 ∩ FF−1 = Aρ0 and the group G0 := F/N0

with the relatively free generating semigroup S0.

Since ρ0 ⊆ ρ implies N0 ⊆ Nρ, there is a natural homomorphism

G0 → G which provides var(G0) ⊇ var(G) for varieties of groups.

To obtain the opposite inclusion it suffices to show that each identity

satisfied in G must be satisfied in G0. Let w = 1 be an identity satisfied in

the group G ∼= F/Nρ. Then Nρ contains a verbal subgroup V generated

by the word w. Since V is fully invariant in F , we conclude that VN0 is

an EndF -invariant normal subgroup contained in Nρ. By Corollary 2,

VN0 defines a fully invariant congruence µ ⊆ ρ, hence µ ⊆ ρ0 and we

have Aµ ⊆ Aρ0 , that is

FF−1 ∩ VN0 ⊆ FF−1 ∩N0. (3)

By (ii) of Proposition 1, G0 = S0S
−1
0 implies F = FF−1N0 and then

VN0=F ∩VN0=FF−1N0∩VN0
(2)
= (FF−1∩VN0)N0

(3)
= (FF−1∩N0)N0=N0.

So N0 contains V and hence the identity w = 1 is satisfied in G0. 2

The following theorem shows that if a group with a relatively free

generating semigroup lies in the left half of Groupland then it must be

in the south-west sector. Unfortunately our proof requires at least three

free generators in the generating semigroup.
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Theorem 2 Let G have a relatively free generating semigroup of rank

greater then two. If G has no free noncyclic subsemigroup then G satisfies

a semigroup identity.

Proof Let S be a relatively free generating semigroup of G with a set of

at least three free generators s1, s2, s3, ... . Since by assumption G has no

free noncyclic subsemigroup, the elements s1s
−1
3 , s2s

−1
3 generate a non-

free subsemigroup. Then there exist nontrivial words a(x, y), b(x, y) such

that

a(s1s
−1
3 , s2s

−1
3 ) = b(s1s

−1
3 , s2s

−1
3 ). (4)

By (iii) of Proposition 1 for every g, h ∈ G there are s, t, r∈S such that

g = sr−1, h = tr−1. Every map of the free generators si to elements of

S defines an endomorphism of S, so we denote by ε the endomorphism

which maps s1→ s, s2→ t, s3→ r and fixes other free generators in S.

Now by applying ε to (4) we obtain a(g, h) = b(g, h) which means that

the group G satisfies the semigroup identity a(x, y)=b(x, y). 2

3. Semigroup respecting groups (S-R groups)

Definition We call a group G semigroup respecting (S-R group) if all of

the identities holding in each generating semigroup of G hold in G.

In case when none generating semigroup of G satisfies nontrivial iden-

tities G is vacuous an S-R group. The problem arises: which groups with

generating semigroups satisfying nontrivial identities are S-R?

The following observation is immediate.

Corollary 3 Torsion groups are S-R.
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Proof If the group G is torsion, then for each s ∈ S there is some natural

n such that s−1 = sn−1 ∈ S, so G = S. Hence G is S-R. 2

We can see that the condition for a group to be semigroup respecting

is a ”local condition” in the sense of Mal’cev.

Proposition 3 If every finitely generated subgroup of a group G is S-R,

then so is G.

Proof Suppose that for some generating semigroup S of G a nontri-

vial identity u(x1, ..., xn) = v(x1, ..., xn) is satisfied in S and fails in G

for elements g1, ..., gn, say. By (ii) of Proposition 1, each element gi

may be written as sit
−1
i , si, ti ∈ S. We denote by S1 the subsemigroup

sgp(s1, ..., sn, t1, ..., tn). Since S1 ⊆ S, the identity u = v is satisfied in

the finitely generated subsemigroup S1 but not in the subgroup gp(S1),

since it contains g1, ..., gn. This contradicts the assumption. 2

Proposition 4 If a group G is residually S-R then it is S-R.

Proof The group G being residually S-R is equivalent to G being a

subcartesian product of some family (Gi| i ∈ I) of S-R groups Gi. Each

generating semigroup S of G will then be a subcartesian product of a

family (Si| i ∈ I) of generating semigroups Si of the Gi. If an identity

holds in S but fails in G it would have to hold in each Si but fail in at

least one Gi, contradicting the assumption that the Gi are all S-R. 2

By Corollary 3 finite groups are S-R, so by Propositions 4 residually

finite groups are S-R. Now by Propositions 3 we get the following

Proposition 5 Locally ’residually finite’ groups are S-R. 2
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Since by ([11], Prop. 7.11) every finitely generated linear group over

a field is residually finite it follows

Corollary 4 Every linear group over a field is S-R.

Our main result is based on the following Lemma, which resembles

the known fact for finitely generated groups: if G/N is finite, then N is

a finitely generated subgroup of G.

Lemma 2 Let G be a finitely generated group with no free noncyclic sub-

semigroup. If G/N is nilpotent-by-finite, then N is a finitely generated

subgroup of G.

Proof By assumption G/N contains a nilpotent normal subgroup H/N

of finite index, that is |G/N : H/N | = |G : H| < ∞. Since G is

finitely generated, then H and H/N are finitely generated. Since H/N

is nilpotent and finitely generated, it is supersoluble ([14] 5.4.6), and

then there exists a finite normal series with, say, m cyclic factors: H =

N0 . N1 . ... . Nm = N.

Since N0 is finitely generated we assume inductively that Ni is genera-

ted by, say, n elements and show that Ni+1 is also finitely generated. The

factor Ni/Ni+1 is cyclic generated by a coset gNi+1. If 〈g〉 ∩Ni+1 6= {e},
then Ni/Ni+1 is finite and hence Ni+1 is finitely generated. So let now

〈g〉 ∩ Ni+1 = {e}. Each generator in Ni is in some power of the coset

gNi+1 and hence there exist t1, ..., tn ∈ Ni+1, such that Ni = 〈g, t1, ..., tn〉,
that is Ni is generated by two subgroups: 〈g〉 and T :=〈t1, ..., tn〉. Let TNi

denote the normal closure of T in Ni. Then TNi ⊆ Ni+1 and 〈g〉 ∩ TNi =

〈g〉 ∩Ni+1 = {e}. Since 〈g〉·TNi = Ni we shall obtain Ni+1 =TNi :

Ni+1 = Ni∩Ni+1 = 〈g〉·TNi∩Ni+1
(2)
= (〈g〉∩Ni+1)T

Ni = (〈g〉∩TNi)TNi = TNi.
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By commutator calculus TNi = T ·[T, Ni] = T ·[T, 〈T, 〈g〉〉] = T 〈g〉 is

generated by all conjugates gktg−k, k ∈ Z, t ∈ T . So since Ni+1 = T 〈g〉,

Ni+1 is generated by subgroups 〈ti〉〈g〉, i ≤ n. We use the assumption that

G has no free noncyclic subsemigroup. It is shown in ([10] Lemma 1),

that in such a group for any two elements a, b, the subgroup 〈a〉〈b〉 is

finitely generated. So Ni+1 is finitely generated, which completes the

induction, and proves that N is finitely generated. 2

We recall here the following well-known lemma.

Lemma 3 Every finite-by-nilpotent group is nilpotent-by-finite.

Proof Let N be a finite normal subgroup of a group G and let G/N be

nilpotent. Then each element a in N has only finitely many conjugates

in G, all contained in N . Hence the index of the centralizer of a in G is

finite. Now the centralizer of N , C := CG(N) is the intersection of these

finitely many centralizers, so it also has finite index in G.

Since G/N is nilpotent, γc(G) ⊆ N for some natural c. Then γc+1(C) =

[γc(C), C] ⊆ [N, C] = {e}, hence C is nilpotent. Since C is of finite index,

G is nilpotent-by-finite. 2

Our main result shows that locally graded groups without free non-

cyclic subsemigroups are S-R, which gives a positive answer to the GB-

problem in that class of groups. The idea of the proof is to reduce the

situation to the case considered in Proposition 5.

Theorem 3 Let G be a locally graded group with a generating semigroup

satisfying a nontrivial identity. If G has no free noncyclic subsemigroup

then G is an S-R group.

Proof In view of Proposition 3 we can assume that G is finitely ge-

nerated. Let N be the intersection of all normal subgroups of finite
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index in G. Assume that N 6= {e}, then G/N is residually finite and

also has a generating semigroup satisfying nontrivial identities. Then by

Proposition 5, G/N must be S-R and hence satisfies some semigroup

identity. The Theorem of Semple and Shalev ([15] p.44), ensures that

a finitely generated residually finite group with a semigroup identity is

nilpotent-by-finite.

Thus G/N is nilpotent-by-finite and by Lemma 2, N is finitely gene-

rated. Being a finitely generated subgroup in a locally graded group, N

must contain a proper subgroup R of finite index in N . By ([11] p.196),

R contains a subgroup K characteristic in N of a finite index in N .

Thus N ! R ⊇ K, where K must be normal in G. Since N/K is finite

and (G/K)/(N/K) ∼= G/N is nilpotent-by-finite, we have that G/K

is finite-by-(nilpotent-by-finite) and by Lemma 3, G/K is nilpotent-by-

finite. Then by [7], G/K is residually finite. So the intersection of all

normal subgroups of finite index in G is in K. That is N ⊆ K, which

contradicts the above inequality N ! K. Hence N ={e}, G is residually

finite and by Proposition 5, G is S-R. 2

The counterexample-group found by S. Ivanov and A. Storozhev does

not satisfy any identity, because it contains a free noncyclic subgroup.

The natural questions arises

Question Does there exist a counterexample-group satisfying a nontriv-

ial identity (a nontrivial semigroup identity)?

Note that by a result of Mal’tsev the metabelian identity does not affect

the generating semigroup in a free group, however we cannot impose the

metabelian identity on a counterexample-group to have a new counterex-

ample group, because by [7] the metabelian groups are locally residually

finite and by Proposition 5, are S-R.
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