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AnaHoTanus

CraTbs cBsi3aHa ¢ BorpocoM P. Bepuca: Ymo obwezo umerom Sreze-
AEBBIE U NOAYZDYNNOBHIE MOHCOCCTNBA, 3ACTNABAAA KOHEUHO TMOPOIHC-
dennvie AOKAADHO CMYNEHYAMBIE 2DYNNDL COOEPAHCAMD HUNDTLOMEH M-
HY nodepynny KonewHno20 undexca? MBbI IMOKa3bIBAEM, YTO JHIEJIE-
BbI€ W TIOJIYTPYIIIOBBIE TOYXKECTBA UMEIOT OJIMHAKOBYIO TAK HA3bIBae-
MyI0 DHIEJIEBYIO KOHCTPYKIINIO, a KazKasi KOHEIHO MOPOXKICHHAS JIO-
KAJbHO CTyIEeHdYaTasi TPYIINa yIOBIETBOPSIONAs TOXKIECTBY C TaKOi
KOHCTPYKITHeH H0IKHa COJIePKaTh HUJIBIIOTEHTHYIO IIO/ITPYIILY KOHEe -
HOTO WHJEKCA.

Abstract

The work is inspired by a question of R.Burns: What do the Engel
laws and positive laws have in common that forces finitely generated
locally graded groups satisfying them to be nilpotent-by-finite? The an-
swer is that these laws have the same so called the Engel construction.

Introduction

Let F={(x,y) be a free group of rank 2, u be a word, and S be a subset in F.

Definition 1. We say that a law w = 1 has construction w€ S if it is
equivalent to a law u = s for some s€S.



The laws with the same construction have similar properties. For example,
the laws with construction [x,y] € F” force the groups satisfying them to
have perfect commutator subgroups.

We denote 2" =y~ iz y', [x,y]=2 'y ‘ay, [z, y] is an Engel commu-
tator [...[[x,y],y], ..., y] where y is repeated i times, and [z, gy] = z. By E,
we denote the following subgroup generated by the Engel commutators:

We show that every binary commutator law is equivalent to a law with the
following so called Engel construction

@,y [, 29] [, ] € B,
Let w =1 be a binary law and U be a variety, it defines. We prove that

e Each finitely generated group in U has finitely generated commutator
subgroup if and only if the law w = 1 implies a law with the following
Engel construction

[377 ny] AéEnfl- (1)

e Positive laws and the Engel laws have the Engel construction (1). The
law z* = 1 implies a law with the Engel construction (1).

e Each finitely generated locally graded group satisfying a law with the
Engel construction (1) is nilpotent-by-finite.

The Engel construction of laws

We show that every binary commutator law is equivalent to a law w =
1, where for some n, the word w is a product of the Engel commutators

Theorem 1. Every binary commutator law w = 1 has the following Engel
construction

[a:,y]kl [z, Qy}k?.. [z, ny]’“" = E,, k>0, k €Z. (2)



Proof. Let w = 1 be a commutator law. Note that F’ belongs to the normal
closure of x in I’ which is freely generated by all conjugates ¥, i € Z. So
w is a product of some z¥" with say, —m <i<—m + n. Conjugation by y™
gives us the equivalent law with w € <a:yl, 0<i<n ). In this subgroup we
can replace the free generators z¥° by x~'z¥" = [z,y'], then

we (2, 0<i<n) = (z, [r,y], 1<i<n ). (3)

We show by induction that (z, [z,9'], 1 <i<n) C E, by proving that
for k > 0, [x,9*] € Ex_1[z, py]. For k = 1 it is clear. Assume now that
[z,y*] € Ej_1|x, vy]. If replace x — [x,y] then

[[,ﬁl},y],yk] € Ek[ma k-i-ly}- (4)

By applying the assumption and its consequence to the commutator identity

[z, 9" = [2,9" [z, 9] [z, 4], v"], (5)

we obtain for k > 0,
2,y € Exlr, k11y)- (6)

So in view of (3), .
w e (z, [z,y'], 1<i<n ) C E,.

Hence every commutator law is equivalent to a law w = 1, where for some
n, the word w is a product of the Engel commutators [z, ;y], 1<i<n.
By ordering these factors modulo E),, we get the law with construction

[x,y}'“ [z, Qy]k?.. [z, ny]k" €E, k€Z n>0.

The Milnor property and R-laws

To consider a special kind of laws, we recall the definition of the Milnor
property of groups, the name of which was suggested by F. Point in [11].

Definition 2. A group G satisfies the Milnor property if for all elements
g, h € G the subgroup (h™'gh', i€Z) is finitely generated.



Note that the group (h~‘gh’, i €Z) is invariant for conjugation by h, hence
if it is finitely generated then it is equal to (h ‘g h', i€N).

The name of the property was motivated by result of Milnor ([8] Lemma 3)
who proved that if a finitely generated group G has this property and A is
an abelian normal subgroup in G so that G/A is cyclic then A is finitely
generated. In 1976 Rosset noticed that the assumption that A is abelian can
be dropped and proved the following results which we present in the following
Lemma.

Lemma 1. Let G be a finitely generated group satisfying the Milnor property.
(1) Then G’ is finitely generated.

(13) If G/N s cyclic then N 1is finitely generated.

(zi1) If G/N 1is polycyclic then N is finitely generated.

Proof. For (i) and (i7) see ([12] Lemmas 2,3), ([7] Lemma 3, Corollary 4).
Note that in [7] the groups satisfying the Milnor property are called re-
strained. For (ii7), if G/N is polycyclic then there is a finite subnormal series
with cyclic factors G = No> Ny > ---> N,, = N. Then by means of m
successive applications of (i) we conclude that N is finitely generated. [

We introduce a class of laws which we call the R-laws (restraining laws)
because, as we show, every group satisfying the R-law has the Milnor prop-
erty (is restrained).

Definition 3. A law is called an R-law if it implies a law with the following
Engel construction where k; € Z, n > 1.

[‘r)y]kl [:L‘7 Qy]k2"‘ [1'7 n—ly]kal [ZE, ny] é E1/1—1' (7>
Example 1. [t is clear that an n-Engel law [x, ,y] = 1 is the R-law.

Example 2. Each law of the form x* =1 is the R-law because it implies the
law [z,y*] = 1 which in view of (6) implies a law of the form (7).

Theorem 2. A law is an R-law if and only if every group satisfying this law
has the Milnor property.

Proof. We denote P, = (x, 2¥', 1<i<k ) and show that [z, yy] € Pp_12?".
For k =1 it is clear. Assume that [z, zy] € Pk_lxyk, then

[, j119) € (Pomia? )N (Pyoga?’ ) C Pra?™"
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It follows for k > 0 that E, C P, which implies the equality E, = P, because
( (6)

. 6
(, [2,9'], 1<i<k ) C Ej.

E,CP,=(z, 2V, 1<i<k) =
Hence the construction [z, ,y] € E,_; is equivalent to z¥" € P,_1, that is
zv" € (x, v :vyn71>. (8)
We use conjugation by y~", so each R-law has also construction
r€ (¥ ", I vy, 9)
and if change y — y~! we have
€ (¥, 2, " "y, (10)
Let G be a relatively free group, freely generated by a,b, ..., satisfying an
MR-law. Then (10) implies
ae(a, d”’ .. a""" a®y, (11)
We conjugate (11) by b1, then
— n— n— (11) n— n
a e (a, ab,,...,ab( 2,) a” 1)> C (a’, a”, ...,ab( 1,) a™).
By repeating the conjugation by b~! we obtain for all 7 > 0,
a” e (ab, d” . a" ) ™y, (12)
Similarly, by (9),
ac(a", o) b a 'y, (13)
. . . b b7n+1 p—" b71 (13) p—n bfnJrl b71
Conjugation by b gives a’ € (a ,a’ ) a’a) C (a” sy a” )
By repeating conjugation we obtain for all i > 0, a® € (a?™", a® ") . ab™"),
bn—l abn> (14>

p—n p—(n—1)
g eeey

which, together with (12) finally gives that the subgroup
b,

(b~'ab’ i€Z)y={(a",
is finitely generated. Since for all elements g, h in any group satisfying the
R-law, the subgroup (h~‘gh’, i € Z) is an image of (b~‘al’, i € Z), we

conclude that the PR-law implies the Milnor property.



Conversely, let G be a relatively free group with free generators a,b. If
the subgroup (b~‘al’, i€ Z) is finitely generated then there exists n such
that the condition (14) holds. Conjugation by 4" implies that

(b~'ab i€Z) = {a,a’d’ ..., a"") = (bal} ieN). (15)

So we have

b2n+1 b b2 b2n
€ (a,a’;a’ ..., a").

Since each relator on free generators is a law (see [9] 13.21), G satisfies a law
with construction of the form (8) which defines the R-laws. O

Theorem 3. A law is an R-law if and only if every finitely generated group
satisfying this law has a finitely generated commutator subgroup.

Proof. 1f G satisfies an R-law then by Theorem 2, G has the Milnor property
an hence by Lemma 1 (i), G’ is finitely generated.

Conversely, let GG be a relatively free group defined by a law w = 1, with
free generators a, b and let G’ be finitely generated. Then the normal closure
of a is equal to (b~*al’ i€ Z) = (a)[{a), (b)] = (a)G’, hence is finitely
generated. Then for some n the condition (14) holds. It follows as above,
that G satisfies the Milnor property and then by Theorem 2, it satisfies an
R-law. O

Positive laws are the laws of the form u(x;, o, .... x,) = v(x), 2, ... T,),
where u,v are distinct words in the free group (x;,xs....), written without
negative powers of x;, xa, ... T, .

Example 3. Fach positive law is an R-law.

Proof. Each positive law implies a binary positive law if substitute z; — x7°.
It was shown by many authors (e.g. [6], [7], [11], [2] p.520) that if a group
G satisfies a binary positive law then G has the Milnor property. Thus by
Theorem 2, positive laws are the JR-laws. O]

Example 4. For all prime p, the variety 2,2, where A is the variety of all
abelian groups, and A, — of all abelian groups of exponent p, does not satisfy
an R-law.

Proof. The variety 0,20 contains a 2-generator group W := CywrC, the
wreath product of a cyclic of order p group C, = (a) and an infinite cyclic
group C' = (b). The commutator subgroup W’ of this group contains ele-
ments a"'a® for all i € Z, hence W’ has an infinite support and cannot be
finitely generated. So by Theorem 2, 2,2l does not satisfy an R-law. [
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A finitely generated residually finite group satisfying either an Engel law
or a positive law is nilpotent-by-finite. It was proved for the Engel laws in
[14] and for positive laws in [13]. By Examples 2 and 3, the Engel laws and
positive laws are the SR-laws. The following lemma extends the statement to
the class of JR-laws.

Lemma 2. FEvery finitely generated residually finite group satisfying an R-
law is nilpotent-by-finite.

Proof. 1t follows from ([3] Theorem A) that if a law w = 1 forces every finitely
generated metabelian group satisfying this law to have a nilpotent (of class c,
say) subgroup of finite index (e, say), then the same holds for every group in
the class containing in particular all residually finite groups. Moreover, the
parameters ¢, e depend on the law only.

So it suffices to show that every finitely generated metabelian group satis-
fying an MR-law is nilpotent-by-finite. Let G be a finitely generated soluble (in
particular metabelian) group satisfying an fR-law. By Groves ([5] Theorem
C), G is either nilpotent-by-finite or var G contains a subvariety 2,2(. Since
the latter is not possible in view of Example 4, the proof is complete. Il

The next property of PR-laws concerns a finite residual R in a group G,
that is the intersection of all subgroups of finite index in G.

Theorem 4. Every finitely generated group G satisfying an R-law has its
finite residual R finitely generated.

Proof. By assumption the group G/ R satisfies an fR-law, hence by Theorem 2
it has the Milnor property. Then by Lemma 2, G/R is nilpotent-by-finite.
So G/R contains a nilpotent subgroup H/R of finite index. Now, since
|G : H| = |(G/R) : (H/R)| < oo and G is finitely generated, both H and
H/R are finitely generated. Being a finitely generated nilpotent group, H/R
is polycyclic (see [9] 31.12). Since H/R also has the Milnor property, we
conclude by Lemma 1 (i7i) that R is finitely generated. O

MR-laws and locally graded groups

The common property of the Engel laws and positive laws of being the
R-laws is necessary and sufficient to answer why they force finitely generated
locally graded groups satisfying them to be nilpotent-by-finite.



We recall that a group G is called locally graded if every nontrivial, finitely
generated subgroup of GG has a proper normal subgroup of finite index. The
class of locally graded groups is closed under taking subgroups, extensions
and groups which are locally-or-residually ’locally graded’. The class of lo-
cally graded groups was introduced in 1970 by S.N.Cernikov [4] to avoid
groups such as infinite Burnside groups or Ol’shanskii-Tarski monsters.

We can prove now the following

Theorem 5. FEvery finitely generated locally graded group satisfying an R-
law is nilpotent-by-finite.

Proof. Let G be a finitely generated locally graded group. By Theorem 4,
its finite residual R is finitely generated. Then, since G is locally graded, if
R # 1, it must contain a proper subgroup (hence a proper normal subgroup)
of finite index 7" C R, say. Then by ([9], 41.43), T' contains a subgroup
K of finite index in R and fully invariant in R, K C 7" C R. Thus K is
normal in G. Now, since R/K is finite and G/R is nilpotent-by-finite, the
isomorphism (G/K)/(R/K) = G/R implies that G/ K is finite-by-(nilpotent-
by-finite). Since finite-by-nilpotent group is nilpotent-by-finite, whence G/ K
is nilpotent-by-finite and then residually finite. It implies R C K, which
contradicts to K CT'C R. Hence R = 1.
So G is residually finite and by Lemma 2 is nilpotent-by-finite as required.
O

Moreover, let 91, denote the variety of all nilpotent groups of class < ¢ and
B, — the variety consisting of all locally finite groups of exponent dividing e.
(Note that the fact that the class B, is actually a variety, is a consequence
of Zelmanov’s solution of the restricted Burnside problem.) Then by result
in [3] (see the proof of Lemma 2) we obtain

Corollary 1. For every R-law there exist positive integers ¢ and e depending
only on the law, such that every locally graded group satisfying this law lies
in the product variety N B,

Note Outside of the class of locally graded groups there are finitely gene-
rated groups satisfying JR-laws (in particular, positive laws), which are not
nilpotent-by-finite. For example a free Burnside group B(r,n),r > 1 satisfies
the R-law 2" = 1. If n is sufficiently large the group is infinite by results
of Novikov and Adian (see [1]), hence it is not nilpotent-by-finite. Note also



that a free finitely generated group satisfying the R-law zy™ = y"x is not
nilpotent-by-finite for n sufficiently large.

Another example was given by Ol’shanskii and Storozhev in [10].

Problem Is there an PR-law that implies neither positive nor Engel law?
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