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ABSTRACT. The work is inspired by an article of M. Herzog, P. Lon-
gobardi, and M. Maj, who considered groups with a finite number
of infinite conjugacy classes. Their main results were obtained un-
der assumption that the F'C-center is of finite index in the group.
We consider here infinite groups with a finite number of conjugacy
classes of any size (FNCC-groups). Hence the FC-center in our
case will be finite, but of infinite index in the group. Among re-
sults on these groups we give a criterion for a wreath product of
FNCC-groups to be an FFNCC-group.

1. INTRODUCTION

Many authors considered groups with some restrictions on conjugacy
classes. Groups with conjugacy classes only of finite size, known as
FC-groups, are well described e.g. in [3, 15, 17]. The generalization
suggested in [8] releases definition of FC-groups by permitting a finite
number of the infinite size conjugacy classes. In this paper we consider
groups with a finite number of conjugacy classes of any size. They
were called C'F-groups in [11]. However, since ’C'F’ has many other
meanings, we shall call these groups FNCC-groups.

Definition 1.1. A group is called FNCC-group if it has only Finite
Number of Conjugacy Classes.

Clearly every finite group is an FNCC-group, while the infinite
cyclic group is not an FNCC-group. The groups considered in [§],
apart from Theorem 1.1(b), are FNCC-groups ounly in the case when
they are finite. However, we are interested in infinite F"NC'C-groups.

The FNCC-groups, without special name, appear for example in
[15, p. 129], [4, 5, 9], in [10, Problem 9.10] and in [14].

In 1949 the first example of an infinite FNCC-group was given in
|9] by G.Higman, B. H. Neumann and H. Neumann. By means of the
famous H N N-extension they proved that every torsion-free group can
be embedded into a group with only two conjugacy classes. In 1952 this
result was generalized by Yu. N. Gorchinskii, who gave a construction
of groups with exactly n conjugacy classes for every n > 2 [4, Corollary
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2]. However all these groups are infinitely generated, obtained as the
unions of infinite sequences of H N N-extensions (or similar).

S.V.Ivanov proved (see [13] Thm.41.2) that for any large enough
prime p there exists a 2-generator infinite group of exponent p with
exactly p conjugacy classes, hence an FFNCC-group.

The results of D.V.Osin from [14] imply that any countable group
with only finitely many orders of elements can be embedded into a 2-
generator F'NCC-group where any two elements of the same order are
conjugate. This proves existence of finitely generated infinite FNCC-
groups with n (n > 2) conjugacy classes.

The importance of finitely generated F'NCC-groups is shown in [11,
Theorem 5.2] in connection with a criterion for a group of units in a
group ring to be finitely generated. In the same paper it is shown, that
every F'NC'C-subgroup of units in any associative ring with polynomial
identity must be finite.

We describe here some properties of F NCC-groups concerning their
subgroups, extensions and wreath products. Some results forcing finite-
ness of FNC'C-groups will also be given. In this way we give a partial
answer to Question 12 posed in [11].

Our notation will be rather standard, as for example in [16]. If G is a
group then for elements a,b € G we denote [a,b] = a"'b~lab = alab.

e a“ denotes the conjugacy class of the element a in the group G.

e 'C(G) - the FC-center of a group G, which consists of all
elements a € G with |a%| < oo.

e R(G) — the finite residual, which is the intersection of all sub-
groups of finite index in the group G.

e C;(R) — the centralizer of R in the group G.

e A group is called anti-finite if it has no proper subgroups of
finite index.

e A group is called locally graded if it has no finitely generated
anti-finite subgroups.

2. BASIC PROPERTIES OF FNCC-GROUPS

Certainly the class of all FNCC-groups is closed under homomor-
phisms and finite direct products.

Lemma 2.1. Let G be an FNCC-group with k conjugacy classes and
let R C G be a subgroup of index m < oco. Then

(1) G is a union of n conjugacy classes with respect to R, where
n < km;
(77) R s an FNCC-group.
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k m
Proof. (1) By assumptions we have G = |J g% = U b;R, gi,b; €
i=1 j=1
G,

n

k m k. m
Then G = U U ggb"R) = U U(ng)R =: Uaf, where «a; € G.
i=1j=1

i=1j=1 =1

(2) If a® N R # 0, then af' C R. This, together with (i), implies
that R is an FNCC-group.
U

The properties considered in the following Lemma are addressed be-
low only by their numbers.

Lemma 2.2. Let G be an FNCC-group with the finite residual R =
R(G) and with the FC-center F := F(G). Then:

(1) R is of finite index in G;

i1) F is finite;
(13i) R is an anti-finite FNCC-group;
(tv) The centralizer of R in G is equal to F;
(v) If G is infinite, then R has a simple infinite homomorphic image;
(vi) If G is torsion, then it is a group of finite exponent.

Proof. (i) Each FNCC-group has only finite number of normal sub-
groups, hence R is of finite index in G.

(77) The property follows immediately from the definition of FNCC-
group.

(77i) By (i) and the definition of R, it has no proper subgroup of
finite index, thus it is anti-finite. Lemma 2.1(i), gives that R is an
FNCC-group.

(iv) Note first that the centralizer Ce(F) = NferCq(f) is, by (i),
a subgroup of finite index in G. Then Cg(F') contains R and hence
Cg(R) 2 F. For the converse inclusion we take a € Cg(R), then
Ca(a) O R and [a®| = |G : Cq(a)| < |G : R|. Since by (i) |G : R| < oo
we get a € F, that is Cg(R) C F. The equality follows.

(v) If G is infinite, then by (i), R is infinite and by (#ii), R is an anti-
finite FNCC-group. Hence R contains a maximal normal subgroup N,
and R/N is infinite simple.

(vi) An FNCC-group has only finite number of orders of elements
and being torsion, it has a finite exponent. Il

By property (vi) of the above Lemma we have that every torsion
FNCC-group satisfies a law of the form 2™ = 1 for some n > 1. This
is an example of so called SR-law. Recall that a law w =1 is an R-law
if every finitely generated group G satisfying this law has G’ finitely
generated, (see [12, Definition 6.2]). Positive laws and Engel laws are
R-laws (see [12, Corollary 6.4]).
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The following Theorem generalizes Proposition 5.5 in [11] and con-
tains Theorem 5.6 from that paper.

Theorem 2.3. If G is an FNCC-group, then G 1is finite in any of the
following cases:

(a) G is linear over a field;

(b) G is locally or residually finite;

(c) G is locally or residually soluble;

(d) G is locally graded and either is finitely generated, or satisfies an
R-law, or is torsion.

Proof. (a) This proof, based on classical arguments of Burnside, is more
detailed than that in [11]. Let G € GL(n, K) be an FNCC-group. The
field K can be assumed algebraically closed. We proceed by induction
on n. If n =1 then G is abelian, hence finite.

Let n > 1. Assume first, that G is irreducible as the group of linear
transformations of K™. Since G is an F'NCC-group, the set of traces
of all elements of G is finite, because conjugate matrices have the same
traces. Hence by |7, Theorem 2.3.3], G is finite.

Now let G C GL(n, K) be reducible. After proper choice of a base
in K™ we can assume that there exists m, 1 < m < n, such that

every g € G is of the form |:04E)g) ﬁfg)}, where a(g) € GL(m, K) and

B(g) € GL(n — m, K). The functions « and 8 are homomorphisms of
groups. Thus a(G) and (G) are FNCC-groups, and hence finite, by
the inductive assumption. Let N be the intersection of kernels of a and
p. Then G/N is finite and N is an FNCC-group, by Lemma 2.1(i7),
as a subgroup of finite index in G. On the other hand, N is soluble,
and even nilpotent, as a subgroup of unitriangular matrices of the form
[16” L } Hence N and so G are finite, which proves (a).

In the text below, we shall assume the contrary, that G is an infinite
FNCC-group and show, that it leads to a contradiction.

(b) Let G be locally finite. By (vi) G is of finite exponent, because
it is torsion. By (v), we can assume that G is simple. Hence, (compare
|2, Lemma 4]|) G does not involve all finite groups, and then by |6,
Theorem 2.6|, it is linear. Now by (a), G is finite. A contradiction.

Since G is infinite, by (¢), R(G) is nontrivial. Hence G cannot be
residually finite.

(¢) Let G be locally soluble. By (v), we can also assume that G is an
infinite simple group. However by ([16], 12.5.2) such a group is finite.
A contradiction.

Let G be residually soluble. Since G has only finite number of normal
subgroups, and each soluble quotient of G is finite (which is proved just
above), we conclude that G is finite. A contradiction.

(d) Let G be locally graded. If G is finitely generated FFNCC-group
then its finite residual R has finite index, so is finitely generated. Since
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G is locally graded, R has a subgroup of finite index, which is impos-
sible, because by (ii7) R is anti-finite.

If G satisfies an JR-law then by [12, Corollary 6.8] based on |1, Theo-
rem B|, G is nilpotent-by-locally finite. Hence, being an F'NCC-group,
G is by (b), nilpotent-by-finite. By Lemma 2.1(i7) and (c¢), the nilpo-
tent normal subgroup of finite index in G is finite. Hence G is finite.
A contradiction.

If G is torsion then by (vi) it has a finite exponent. Then it satisfies
an R-law and, by the above case, is finite. A contradiction. O

In connection with the above properties the following question arises.

Question 2.4. Does there exist an infinite and locally graded FNCC'-
group?

In view of the above theorem it suffices to look for an infinitely gen-
erated locally graded FFINC'C-group without subgroups of finite index.
Moreover, such a group, if exists, could not be periodic. In the previ-
ous section we indicated the existence of infinite simple F'NCC-groups.
Some of them are certainly not locally graded.

As a consequence of Lemma 2.2 we obtain

Theorem 2.5. An infinite FNCC-group G has a normal series
G > R> Z(R), where R:= R(G).
For this series we have
e G/R is finite,
e R/Z(R) is anti-finite FNCC-group with trivial FC-center,
e Z/(R)=C(R)NR=FC(G)NR is finite abelian.

Proof. In view of Properties (i), (éi7), G/R is finite, and R/Z(R) is
anti-finite F’NCC-group. We show now that Z(R) = FC(R).

Let a € FC(R), then [R : Cg(a)] < oco. However, by (iii), R is anti-
finite and it follows that a € Z(R). This means that FC(R) C Z(R).
The converse inclusion is clear, so FC(R) = Z(R). Since R is FNCC-
group, F'C(R) = Z(R) is finite abelian. The quotient R/Z(R) is an
anti-finite /"N CC-group, which implies (as above) that its center and
FC-center coincide. Since by (iv), FC(R) is finite, the F'C-center of
R/Z(R) is trivial. O

Question 2.6. Does there exist an anti-finite FNCC-group G with
Z(G)#£ 17

3. EXTENSIONS

The question whether the class of FNCC-groups is closed for exten-
sions is still open, however in some special cases we can give a positive
answer. To give an answer for finite-by-F NCC-groups, we first prove
an auxiliary result
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Lemma 3.1. Let N be a finite normal subgroup in a group G. If G/N
is an FNCC-group, then the finite residual R(G) is of finite index in
G, and the FC-center FC(Q) is finite.

Proof. Let G/N be an FNCC-group. Then, by property (i), R(G/N)
is of finite index in G/N. Let R(G/N) = H/N, where N C H. Then
|G : H| < oo, and hence R C H. On the other hand, if X < G
and |G : X| < oo, then also |G : NX| < oo, and hence H/N =
R(G/N) C NX/N. In this way we obtain that H C NX. Hence,
|G/ X| =|G/NX||INX/X| <|G/H|-|N|, which is a common bound for
indices of subgroups X of finite index in G. Now by Third Isomorphism
Theorem |G/R| < oo, so R(G) is of finite index in G.

Since G/N is FNCC-group, we have by (i7), that FC(G/N) is finite.
The assumption |N| < oo implies N C FC(G). Then FC(G)/N =
FC(G/N) is finite and hence F'C(G) is finite. O

Theorem 3.2. If N is a finite normal subgroup in a group G and G /N
1s an FNCC-group, then G is an FNCC-group.

Proof. Let |[N| = n and G/N be an FNCC-group. By assumption
G/N is a sum of say s conjugacy classes, then for some a; € G

G=aNUa§SNU,..UaSN.
By Lemma 3.1, R(G) has a finite index [, say, in G, hence
G = glR U ggRU, ...glR, gi € G.

By Lemma 3.1, FC(G) is finite. Similarly as in the proof of (iv)
we can get that R(G) centralizes F'C'(G) and hence FC(G) centralizes
R(G). The assumption that |[N| < oo implies N C FC(G), thus we
obtain that N centralizes R(G),

N C Cq(R).
We have three sets of elements:
{a;, i =1,2,..s}, {g;, j=1,2,..01}, N={x, k=1,2,...,n,},

and show that G is a sum of a finite number of conjugacy classes
(af’x;)¢. Tt suffices to check that each element in G is in such a class.
Let b € G, then there is a;, g € G and 2 € N such that b = alxy.
Moreover, there is g; € G such that g € g;R. Then since N C Cx(R),

b=alzy € a?"xy C (a¥ ) C (af2)C.

Hence G is an FNC(C-group with no more then sin conjugacy classes.
OJ

Theorem 3.3. Let R be a normal subgroup of finite index in a group G.
If R is an FNCC-group and every inner automorphism of G restricted
to R is an inner automorphism of R, then G is an FNCC'-group.
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Proof. Let ¢ : G — Aut(R) be a homomorphism given by
o(g):r—1r? for g€ G and r € R.

From the assumption on automorphisms we have that o(G) = ¢(R)
is an FFNCC-group, as a homomorphic image of R. The kernel of ¢ is
equal to C' = Cg(R). The subgroup C'N R is finite, because R is an
FNCC-group. The group C/(C N R) ~ CR/R C G/R is finite, by
assumption on R. Thus C' is finite. Now, G/C ~ ¢(G) is an FNCC-
group and hence, by Theorem 3.2, G is an FNCC-group. U

The following question is natural is this place

Question 3.4. Let R be a normal subgroup of finite index in a group
G. Assume that R is an FNCC-group and every inner automorphism
of G restricted to R preserves conjugacy classes in R. Is G an FNCC-
group?

Now we show that to speak of a finite extension of an FNCC' group,
it suffices to consider only finite cyclic extensions.

Lemma 3.5. Let G be a group and let G = U Gj, where G; C G

for g =1,...,m. If the subgroups G; are FNCC -groups then G is an
FNC’C-group

Proof. Let each G; be an FFNCC-group. By assumption there are
elements a1, ajo, . .., ajn; € G; such that

nj m Ty

G, = U(aji)Gj; which implies G = U U(aji)G7

i=1 j=1i=1
and hence G is an FFNC'(C-group. U

Let R C G be a normal subgroup of finite index. Then there are
elements a4, ..., a, € GG such that

(].) G = U(R, CLi> = U Gi, where Gz = <R, ai>.

i=1
Now for GG; we have a number [; and a normal series

such that all factor groups H;;/H;j_1) are cyclic of prime orders.
Under notation from (1) and (2) in Lemma 3.5 we have

Corollary 3.6. Let R C G be a normal subgroup of finite index. If R
is an FNCC-group then G is an FNCC-group if and only if groups
(R,a;) are FNCC-groups, or equivalently, groups H;; are FNCC-
groups.
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Remark. If one is interested only in semidirect product of the type
G = Rx F, where F'is a finite group then, by (1), it suffices to consider
only the case when F' is cyclic, hence it is a direct product of cyclic
p-groups. Thus one can restrict to the case when F' is cyclic of prime
power order, because for F' = F; x Fy we have in a natural way the
following formula:

(3) R X (Fy X F3) ~ (R x Fy) x F;.

Now we concentrate on a special type of semidirect products.

Lemma 3.7. Let P be an FNCC-group and R = [[ P;, - the direct

product of n copies of P. Let (b), be a cyclic group of order n, and
G = R x (b),, — the semidirect product, where b acts on R as a cyclic
permutation of factors. Then the coset bR is contained in a union of
finite number of conjugacy classes in G.

Proof. The set of representatives of conjugacy classes in P we denote
by P :={p1, p2,--- ,Pm}- Then the elements in R are of the form

(ah a27'~-7an)

(4) (p;lllvp?;)vp?:> = (pjl)pjzw“vpjn) y Dy € Pa a; € R.

Hence R has m™ conjugacy classes with the representatives

(5) p:<pj17pj27"' 7pjn)’ ij,P'

To prove the Lemma we show that each element br € bR, 1is in some
of m™ conjugacy classes of the form (bp.). It suffices to find for each
r € Rsuch z € R and p, of the form (5), that the following equality
holds br = (bp,)*. In view of the identity

bp)® = (bp)r = bbb a" (bp)x = b(2®)pa
(bp) p p p
the equality br = (bp,)” can be written as

(6) r=(2")"p.,

where r is any given element of the form (4), with the unknown elements
x = (w1, 22, ...,x,) € R, and p, of the form (5). We shall find a
solution where p, is of the form

(7) p. = (ps,€, €, ,... ,€).

Since (2°)7' = (a1, 27!, 2yt ..., 2, 1)), the equation (6) is now:

(P51, 052, s pir) = ()t o7t wyt ) (e e, e, e) (T, T, X)),
It implies n equations on elements of P with unknowns p., z1,xs, ..., x,.
8) pll==,"p.x1, pE=a'me, pPR=a3'ws, ... pli=ax,' 7,

If multiply these equations by sides, we get

ay,a2,a3 an __ —1 — 2 In
P;Pj, Dy, Pj, =%y Peln =P, -
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a1 an

Then, since pi'pip}?--- pi* is an element in P, it is equal to some
py, where u € R. So we get the solution: p, = p; and x, = u. Then
Pz = (pj76767 76)7 and by (8)7
—1 —1
Ty =pyuphl, Ty =Py =Py upgpg
T = Ty = Py wpfpy P P i<

which finishes the proof. U

Theorem 3.8. Let P be an FNCC-group, n > 1, and R = [[ P, be

the direct product of n copies of P. Let B C S, be a group permuting
factors in R. Then the semidirect product G = R x B is an FNCC'-

group.

Proof. Lemma 2.1(ii) applied to G C R x S, allows us to prove the
result only for B = S,,. We are going to proceed by induction on n. For
n =1 we have G ~ P and the result is trivial.

Now let n > 1. If 0 € 5,, is a cycle of length n then, by Lemma
3.7, the coset o R is contained in a union of finite number of conjugacy
classes. If o is not of such type then we can write o = v, where ~
permutes cyclically m < n factors of R and is fixed on the others,
while § permutes at most n — m factors of R, fixed by 7. Then v C §,,
permutes factors of P™ and 6 C S,,_,, permutes factors of P"~™ in a
natural way. Let G be the semidirect product of P™ with () and G
the semidirect product of P"~™ with (§) under these actions. Then,
by Lemma 2.1(ii) applied to extensions (P™,~) C Gy, (P"™,0) C Ga,
and by the inductive assumption, GG; and Gy are FNC'C-groups. Thus
G X G is also an FNC'C-group, contained in GG in a natural way.
Moreover, o R C (G; X (G5. This means, that ¢ R is contained in a union
of a finite number of conjugacy classes in G. Now the result follows,
because R is of finite index in G. O

For further text we recall that the restricted wreath product AwrB

of groups A and B is a semidirect product G = Rx B where R = [ A
beB
is the direct product of copies of A, numbered by elements of B and

B acts on R by shifting indices. Instead of A we write A, and
AY = b1 Ab. Every element g € G can be uniquely written as ¢ = bw
where b € B and w is a product of commuting factors a’, where b € B,
a® =b"tab, ba-bja; = bbjaa.

Now we give a criterion for a restricted wreath product of groups to
be an FFNCC-group.

Theorem 3.9. A restricted wreath product Awr B is an FNCC-group
if and only if A is an FNCC-group and B 1is finite.
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Proof Let G = AwrB = ([[7A’) x B = R x B be an FNCC-
beB
group. In the restricted wreath product each element » € R has a finite

support of the length s(r), say. Moreover, the conjugate elements have
supports of the same length. If G is an F'NCC-group, then the lengths
of possible supports have only finite number of values, which is possible
only if the group B is finite. Then R is a subgroup of finite index in G
and by Lemma 2.1(iz), R is an FNCC-group. Then A is an FNCC
group as an image of R.

The converse implication follows from Theorem 3.8, because the
group B acts by permutations on the subscripts of direct factors in
R. O
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