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Abstract. The work is inspired by an article of M.Herzog, P. Lon-
gobardi, and M.Maj, who considered groups with a �nite number
of in�nite conjugacy classes. Their main results were obtained un-
der assumption that the FC-center is of �nite index in the group.
We consider here in�nite groups with a �nite number of conjugacy
classes of any size (FNCC-groups). Hence the FC-center in our
case will be �nite, but of in�nite index in the group. Among re-
sults on these groups we give a criterion for a wreath product of
FNCC-groups to be an FNCC-group.

1. Introduction

Many authors considered groups with some restrictions on conjugacy
classes. Groups with conjugacy classes only of �nite size, known as
FC-groups, are well described e.g. in [3, 15, 17]. The generalization
suggested in [8] releases de�nition of FC-groups by permitting a �nite
number of the in�nite size conjugacy classes. In this paper we consider
groups with a �nite number of conjugacy classes of any size. They
were called CF -groups in [11]. However, since 'CF ' has many other
meanings, we shall call these groups FNCC-groups.

De�nition 1.1. A group is called FNCC-group if it has only Finite

Number of Conjugacy Classes.

Clearly every �nite group is an FNCC-group, while the in�nite
cyclic group is not an FNCC-group. The groups considered in [8],
apart from Theorem 1.1(b), are FNCC-groups only in the case when
they are �nite. However, we are interested in in�nite FNCC-groups.
The FNCC-groups, without special name, appear for example in

[15, p. 129], [4, 5, 9], in [10, Problem 9.10] and in [14].
In 1949 the �rst example of an in�nite FNCC-group was given in

[9] by G.Higman, B.H.Neumann and H.Neumann. By means of the
famous HNN -extension they proved that every torsion-free group can
be embedded into a group with only two conjugacy classes. In 1952 this
result was generalized by Yu.N.Gorchinskii, who gave a construction
of groups with exactly n conjugacy classes for every n ≥ 2 [4, Corollary
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2]. However all these groups are in�nitely generated, obtained as the
unions of in�nite sequences of HNN -extensions (or similar).
S.V. Ivanov proved (see [13] Thm. 41.2) that for any large enough

prime p there exists a 2-generator in�nite group of exponent p with
exactly p conjugacy classes, hence an FNCC-group.
The results of D.V.Osin from [14] imply that any countable group

with only �nitely many orders of elements can be embedded into a 2-
generator FNCC-group where any two elements of the same order are
conjugate. This proves existence of �nitely generated in�nite FNCC-
groups with n (n ≥ 2) conjugacy classes.
The importance of �nitely generated FNCC-groups is shown in [11,

Theorem 5.2] in connection with a criterion for a group of units in a
group ring to be �nitely generated. In the same paper it is shown, that
every FNCC-subgroup of units in any associative ring with polynomial
identity must be �nite.
We describe here some properties of FNCC-groups concerning their

subgroups, extensions and wreath products. Some results forcing �nite-
ness of FNCC-groups will also be given. In this way we give a partial
answer to Question 12 posed in [11].
Our notation will be rather standard, as for example in [16]. If G is a
group then for elements a, b ∈ G we denote [a, b] = a−1b−1a b = a−1ab.

• aG denotes the conjugacy class of the element a in the group G.
• FC(G) � the FC-center of a group G, which consists of all
elements a ∈ G with |aG| <∞.
• R(G) � the �nite residual, which is the intersection of all sub-
groups of �nite index in the group G.
• CG(R) � the centralizer of R in the group G.
• A group is called anti-�nite if it has no proper subgroups of
�nite index.
• A group is called locally graded if it has no �nitely generated
anti-�nite subgroups.

2. Basic properties of FNCC-groups

Certainly the class of all FNCC-groups is closed under homomor-
phisms and �nite direct products.

Lemma 2.1. Let G be an FNCC-group with k conjugacy classes and

let R ⊆ G be a subgroup of index m <∞. Then

(i) G is a union of n conjugacy classes with respect to R, where

n ≤ km;
(ii) R is an FNCC-group.
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Proof. (1) By assumptions we have G =
k⋃
i=1

gGi =
m⋃
j=1

bjR, gi, bj ∈

G,

Then G =
k⋃
i=1

m⋃
j=1

g
(bjR)
i =

k⋃
i=1

m⋃
j=1

(g
bj
i )

R =:
n⋃
i=1

aRi , where ai ∈ G.

(2) If aRi ∩ R 6= ∅, then aRi ⊆ R. This, together with (i), implies
that R is an FNCC-group.

�

The properties considered in the following Lemma are addressed be-
low only by their numbers.

Lemma 2.2. Let G be an FNCC-group with the �nite residual R :=
R(G) and with the FC-center F := F (G). Then:

(i) R is of �nite index in G;

(ii) F is �nite;

(iii) R is an anti-�nite FNCC-group;

(iv) The centralizer of R in G is equal to F ;

(v) If G is in�nite, then R has a simple in�nite homomorphic image;

(vi) If G is torsion, then it is a group of �nite exponent.

Proof. (i) Each FNCC-group has only �nite number of normal sub-
groups, hence R is of �nite index in G.

(ii) The property follows immediately from the de�nition of FNCC-
group.

(iii) By (i) and the de�nition of R, it has no proper subgroup of
�nite index, thus it is anti-�nite. Lemma 2.1(ii), gives that R is an
FNCC-group.

(iv) Note �rst that the centralizer CG(F ) = ∩f∈FCG(f) is, by (ii),
a subgroup of �nite index in G. Then CG(F ) contains R and hence
CG(R) ⊇ F . For the converse inclusion we take a ∈ CG(R), then
CG(a) ⊇ R and |aG| = |G : CG(a)| ≤ |G : R|. Since by (i) |G : R| <∞
we get a ∈ F , that is CG(R) ⊆ F . The equality follows.
(v) If G is in�nite, then by (i), R is in�nite and by (iii), R is an anti-

�nite FNCC-group. Hence R contains a maximal normal subgroup N ,
and R/N is in�nite simple.

(vi) An FNCC-group has only �nite number of orders of elements
and being torsion, it has a �nite exponent. �

By property (vi) of the above Lemma we have that every torsion
FNCC-group satis�es a law of the form xn ≡ 1 for some n ≥ 1. This
is an example of so called R-law. Recall that a law w ≡ 1 is an R-law
if every �nitely generated group G satisfying this law has G′ �nitely
generated, (see [12, De�nition 6.2]). Positive laws and Engel laws are
R-laws (see [12, Corollary 6.4]).
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The following Theorem generalizes Proposition 5.5 in [11] and con-
tains Theorem 5.6 from that paper.

Theorem 2.3. If G is an FNCC-group, then G is �nite in any of the

following cases:

(a) G is linear over a �eld;

(b) G is locally or residually �nite;

(c) G is locally or residually soluble;

(d) G is locally graded and either is �nitely generated, or satis�es an

R-law, or is torsion.

Proof. (a) This proof, based on classical arguments of Burnside, is more
detailed than that in [11]. LetG ⊆ GL(n,K) be an FNCC-group. The
�eld K can be assumed algebraically closed. We proceed by induction
on n. If n = 1 then G is abelian, hence �nite.
Let n > 1. Assume �rst, that G is irreducible as the group of linear

transformations of Kn. Since G is an FNCC-group, the set of traces
of all elements of G is �nite, because conjugate matrices have the same
traces. Hence by [7, Theorem 2.3.3], G is �nite.
Now let G ⊆ GL(n,K) be reducible. After proper choice of a base

in Kn we can assume that there exists m, 1 < m < n, such that

every g ∈ G is of the form
[
α(g) x
0 β(g)

]
, where α(g) ∈ GL(m,K) and

β(g) ∈ GL(n −m,K). The functions α and β are homomorphisms of
groups. Thus α(G) and β(G) are FNCC-groups, and hence �nite, by
the inductive assumption. Let N be the intersection of kernels of α and
β. Then G/N is �nite and N is an FNCC-group, by Lemma 2.1(ii),
as a subgroup of �nite index in G. On the other hand, N is soluble,
and even nilpotent, as a subgroup of unitriangular matrices of the form[
1m x
0 1n−m

]
. Hence N and so G are �nite, which proves (a).

In the text below, we shall assume the contrary, that G is an in�nite
FNCC-group and show, that it leads to a contradiction.
(b) Let G be locally �nite. By (vi) G is of �nite exponent, because

it is torsion. By (v), we can assume that G is simple. Hence, (compare
[2, Lemma 4]) G does not involve all �nite groups, and then by [6,
Theorem 2.6], it is linear. Now by (a), G is �nite. A contradiction.
Since G is in�nite, by (i), R(G) is nontrivial. Hence G cannot be

residually �nite.
(c) Let G be locally soluble. By (v), we can also assume that G is an

in�nite simple group. However by ([16], 12.5.2) such a group is �nite.
A contradiction.
Let G be residually soluble. Since G has only �nite number of normal

subgroups, and each soluble quotient of G is �nite (which is proved just
above), we conclude that G is �nite. A contradiction.
(d) Let G be locally graded. If G is �nitely generated FNCC-group

then its �nite residual R has �nite index, so is �nitely generated. Since
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G is locally graded, R has a subgroup of �nite index, which is impos-
sible, because by (iii) R is anti-�nite.
If G satis�es an R-law then by [12, Corollary 6.8] based on [1, Theo-

rem B], G is nilpotent-by-locally �nite. Hence, being an FNCC-group,
G is by (b), nilpotent-by-�nite. By Lemma 2.1(ii) and (c), the nilpo-
tent normal subgroup of �nite index in G is �nite. Hence G is �nite.
A contradiction.
If G is torsion then by (vi) it has a �nite exponent. Then it satis�es

an R-law and, by the above case, is �nite. A contradiction. �

In connection with the above properties the following question arises.

Question 2.4. Does there exist an in�nite and locally graded FNCC-

group?

In view of the above theorem it su�ces to look for an in�nitely gen-
erated locally graded FNCC-group without subgroups of �nite index.
Moreover, such a group, if exists, could not be periodic. In the previ-
ous section we indicated the existence of in�nite simple FNCC-groups.
Some of them are certainly not locally graded.
As a consequence of Lemma 2.2 we obtain

Theorem 2.5. An in�nite FNCC-group G has a normal series

G B R B Z(R), where R := R(G).

For this series we have

• G/R is �nite,

• R/Z(R) is anti-�nite FNCC-group with trivial FC-center,

• Z(R) = C(R) ∩R = FC(G) ∩R is �nite abelian.

Proof. In view of Properties (i), (iii), G/R is �nite, and R/Z(R) is
anti-�nite FNCC-group. We show now that Z(R) = FC(R).
Let a ∈ FC(R), then [R : CR(a)] <∞. However, by (iii), R is anti-

�nite and it follows that a ∈ Z(R). This means that FC(R) ⊆ Z(R).
The converse inclusion is clear, so FC(R) = Z(R). Since R is FNCC-
group, FC(R) = Z(R) is �nite abelian. The quotient R/Z(R) is an
anti-�nite FNCC-group, which implies (as above) that its center and
FC-center coincide. Since by (iv), FC(R) is �nite, the FC-center of
R/Z(R) is trivial. �

Question 2.6. Does there exist an anti-�nite FNCC-group G with

Z(G) 6= 1?

3. Extensions

The question whether the class of FNCC-groups is closed for exten-
sions is still open, however in some special cases we can give a positive
answer. To give an answer for �nite-by-FNCC-groups, we �rst prove
an auxiliary result
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Lemma 3.1. Let N be a �nite normal subgroup in a group G. If G/N
is an FNCC-group, then the �nite residual R(G) is of �nite index in

G, and the FC-center FC(G) is �nite.

Proof. Let G/N be an FNCC-group. Then, by property (i), R(G/N)
is of �nite index in G/N . Let R(G/N) = H/N , where N ⊆ H. Then
|G : H| < ∞, and hence R ⊆ H. On the other hand, if X � G
and |G : X| < ∞, then also |G : NX| < ∞, and hence H/N =
R(G/N) ⊆ NX/N. In this way we obtain that H ⊆ NX. Hence,
|G/X| = |G/NX||NX/X| ≤ |G/H|·|N |, which is a common bound for
indices of subgroups X of �nite index in G. Now by Third Isomorphism
Theorem |G/R| <∞, so R(G) is of �nite index in G.
Since G/N is FNCC-group, we have by (ii), that FC(G/N) is �nite.

The assumption |N | < ∞ implies N ⊆ FC(G). Then FC(G)/N =
FC(G/N) is �nite and hence FC(G) is �nite. �

Theorem 3.2. If N is a �nite normal subgroup in a group G and G/N
is an FNCC-group, then G is an FNCC-group.

Proof. Let |N | = n and G/N be an FNCC-group. By assumption
G/N is a sum of say s conjugacy classes, then for some ai ∈ G

G = aG1 N ∪ aG2 N∪, ... ∪ aGs N.

By Lemma 3.1, R(G) has a �nite index l, say, in G, hence

G = g1R ∪ g2R∪, ...glR, gi ∈ G.

By Lemma 3.1, FC(G) is �nite. Similarly as in the proof of (iv)
we can get that R(G) centralizes FC(G) and hence FC(G) centralizes
R(G). The assumption that |N | < ∞ implies N ⊆ FC(G), thus we
obtain that N centralizes R(G),

N ⊆ CG(R).

We have three sets of elements:

{ai, i = 1, 2, ...s}, {gj, j = 1, 2, ...l}, N = {xk, k = 1, 2, ..., n, },

and show that G is a sum of a �nite number of conjugacy classes
(a
gj
i xk)

G. It su�ces to check that each element in G is in such a class.
Let b ∈ G, then there is ai, g ∈ G and xk ∈ N such that b = agixk.
Moreover, there is gj ∈ G such that g ∈ gjR. Then since N ⊆ CG(R),

b = agixk ∈ a
gjR
i xk ⊆ (a

gj
i xk)

R ⊆ (a
gj
i xk)

G.

Hence G is an FNCC-group with no more then sln conjugacy classes.
�

Theorem 3.3. Let R be a normal subgroup of �nite index in a group G.

If R is an FNCC-group and every inner automorphism of G restricted

to R is an inner automorphism of R, then G is an FNCC-group.
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Proof. Let ϕ : G→ Aut(R) be a homomorphism given by

ϕ(g) : r → rg for g ∈ G and r ∈ R.

From the assumption on automorphisms we have that ϕ(G) = ϕ(R)
is an FNCC-group, as a homomorphic image of R. The kernel of ϕ is
equal to C = CG(R). The subgroup C ∩ R is �nite, because R is an
FNCC-group. The group C/(C ∩ R) ' CR/R ⊆ G/R is �nite, by
assumption on R. Thus C is �nite. Now, G/C ' ϕ(G) is an FNCC-
group and hence, by Theorem 3.2, G is an FNCC-group. �

The following question is natural is this place

Question 3.4. Let R be a normal subgroup of �nite index in a group

G. Assume that R is an FNCC-group and every inner automorphism

of G restricted to R preserves conjugacy classes in R. Is G an FNCC-

group?

Now we show that to speak of a �nite extension of an FNCC group,
it su�ces to consider only �nite cyclic extensions.

Lemma 3.5. Let G be a group and let G =
m⋃
j=1

Gj, where Gj ⊆ G

for j = 1, . . . ,m. If the subgroups Gj are FNCC-groups then G is an

FNCC-group.

Proof. Let each Gj be an FNCC-group. By assumption there are
elements aj1, aj2, . . . , ajnj

∈ Gj such that

Gj =

nj⋃
i=1

(aji)
Gj , which implies G =

m⋃
j=1

nj⋃
i=1

(aji)
G,

and hence G is an FNCC-group. �

Let R ⊆ G be a normal subgroup of �nite index. Then there are
elements a1, . . . , an ∈ G such that

(1) G =
n⋃
i=1

〈R, ai〉 =
n⋃
i=1

Gi, where Gi = 〈R, ai〉.

Now for Gi we have a number li and a normal series

(2) R = Hi0 ≤ . . . ≤ Hi li = Gi

such that all factor groups Hij/Hi(j−1) are cyclic of prime orders.
Under notation from (1) and (2) in Lemma 3.5 we have

Corollary 3.6. Let R ⊆ G be a normal subgroup of �nite index. If R
is an FNCC-group then G is an FNCC-group if and only if groups

〈R, ai〉 are FNCC-groups, or equivalently, groups Hij are FNCC-

groups.
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Remark. If one is interested only in semidirect product of the type
G = RoF, where F is a �nite group then, by (1), it su�ces to consider
only the case when F is cyclic, hence it is a direct product of cyclic
p-groups. Thus one can restrict to the case when F is cyclic of prime
power order, because for F = F1 × F2 we have in a natural way the
following formula:

(3) Ro (F1 × F2) ' (Ro F1)o F2.

Now we concentrate on a special type of semidirect products.

Lemma 3.7. Let P be an FNCC-group and R =
n∏
i

×
Pi, � the direct

product of n copies of P . Let 〈b〉n be a cyclic group of order n, and

G = R o 〈b〉n � the semidirect product, where b acts on R as a cyclic

permutation of factors. Then the coset bR is contained in a union of

�nite number of conjugacy classes in G.

Proof. The set of representatives of conjugacy classes in P we denote
by P := {p1, p2 , . . . , pm}. Then the elements in R are of the form

(4) (pa1j1 , p
a2
j2
, ..., panjn ) =

(
pj1 , pj2 , ..., pjn

)(a1, a2,...,an), pj ∈ P , aj ∈ R.

Hence R has mn conjugacy classes with the representatives

(5) ρ = (pj1 , pj2 , . . . , pjn
)
, pj ∈ P .

To prove the Lemma we show that each element br ∈ bR, is in some
of mn conjugacy classes of the form (bρz)

G. It su�ces to �nd for each
r ∈ R such x ∈ R and ρz of the form (5), that the following equality
holds br = (bρz)

x. In view of the identity

(bρ)x = x−1(bρ)x = b b−1x−1(bρ)x = b (xb)−1ρ x

the equality br = (bρz)
x can be written as

(6) r = (xb)−1ρz x,

where r is any given element of the form (4), with the unknown elements
x = (x1, x2, . . . , xn) ∈ R, and ρz of the form (5). We shall �nd a
solution where ρz is of the form

(7) ρz = (pz, e, e, , . . . , e).

Since (xb)−1 = (x−1n , x−11 , x−12 , ..., x−1n−1), the equation (6) is now:

(pa1j1 , p
a2
j2
, ..., panjn ) = (x−1n , x−11 , x−12 , ..., x−1n−1)(pz, e, e, ..., e)(x1, x2, ..., xn).

It implies n equations on elements of P with unknowns pz, x1, x2, . . . , xn.

(8) pa1j1 = x−1n pz x1, pa2j2 = x−11 x2, pa3j3 = x−12 x3, . . . p
ai
ji
= x−1n−1xn.

If multiply these equations by sides, we get

pa1j1 p
a2
j2
pa3j3 · · · p

an
jn

= x−1n pz xn = pxnz .
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Then, since pa1j1 p
a2
j2
pa3j3 · · · p

an
jn

is an element in P , it is equal to some
puj , where u ∈ R. So we get the solution: pz = pj and xn = u. Then
ρz = (pj, e, e, ... , e), and by (8),

x1 = p−1j u pa1j1 , x2 = x1p
a2
j2

= p−1j u pa1j1 p
a2
j2
, . . . ,

xi = xi−1p
ai
ji
= p−1j u pa1j1 p

a2
j2
. . . p

ai−1

ji−1
paiji , i < n.

which �nishes the proof. �

Theorem 3.8. Let P be an FNCC-group, n ≥ 1, and R =
n∏
i

×
Pi, be

the direct product of n copies of P . Let B ⊆ Sn be a group permuting

factors in R. Then the semidirect product G = R o B is an FNCC-

group.

Proof. Lemma 2.1(ii) applied to G ⊆ R o Sn allows us to prove the
result only for B = Sn.We are going to proceed by induction on n. For
n = 1 we have G ' P and the result is trivial.
Now let n > 1. If σ ∈ Sn is a cycle of length n then, by Lemma

3.7, the coset σR is contained in a union of �nite number of conjugacy
classes. If σ is not of such type then we can write σ = γδ, where γ
permutes cyclically m < n factors of R and is �xed on the others,
while δ permutes at most n−m factors of R, �xed by γ. Then γ ⊆ Sm
permutes factors of Pm and δ ⊆ Sn−m permutes factors of P n−m in a
natural way. Let G1 be the semidirect product of Pm with 〈γ〉 and G2

the semidirect product of P n−m with 〈δ〉 under these actions. Then,
by Lemma 2.1(ii) applied to extensions 〈Pm, γ〉 ⊆ G1, 〈P n−m, δ〉 ⊆ G2,
and by the inductive assumption, G1 and G2 are FNCC-groups. Thus
G1 × G2 is also an FNCC-group, contained in G in a natural way.
Moreover, σR ⊆ G1×G2. This means, that σR is contained in a union
of a �nite number of conjugacy classes in G. Now the result follows,
because R is of �nite index in G. �

For further text we recall that the restricted wreath product AwrB
of groups A and B is a semidirect product G = RoB where R =

∏
b∈B

×
Ab

is the direct product of copies of A, numbered by elements of B and
B acts on R by shifting indices. Instead of Ae we write A, and
Ab = b−1Ab. Every element g ∈ G can be uniquely written as g = bw
where b ∈ B and w is a product of commuting factors ab, where b ∈ B,
ab = b−1a b, ba · b1a1 = bb1a

b1a1.

Now we give a criterion for a restricted wreath product of groups to
be an FNCC-group.

Theorem 3.9. A restricted wreath product AwrB is an FNCC-group

if and only if A is an FNCC-group and B is �nite.
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Proof. Let G = A wrB = (
∏
b∈B

×
Ab) o B = R o B be an FNCC-

group. In the restricted wreath product each element r ∈ R has a �nite
support of the length s(r), say. Moreover, the conjugate elements have
supports of the same length. If G is an FNCC-group, then the lengths
of possible supports have only �nite number of values, which is possible
only if the group B is �nite. Then R is a subgroup of �nite index in G
and by Lemma 2.1(ii), R is an FNCC-group. Then A is an FNCC
group as an image of R.
The converse implication follows from Theorem 3.8, because the

group B acts by permutations on the subscripts of direct factors in
R. �
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