GENERALIZED FUNCTIONS AND CALCULUS OPERATORS OF
MATHEMATICA APPLIED TO EVALUATION OF INFLUENCE LINES
AND ENVELOPES OF STATICALLY INDETERMINATE BEAMS

Ryszard Walentyński¹

Abstract
The paper presents an analytical method of finding functions of influence lines of
statically indeterminate beams. There are presented solutions of a fourth order equation
with a right hand side with second and third derivative of Dirac delta. There is shown
that their solution are influence lines of moments and transverse forces. Moreover,
thanks to Mathematica, analytical form of envelopes functions can be evaluated.

Keywords
Influence lines, fundamental solution, generalized functions, Dirac delta, Heaviside step
function, structural mechanics, differential equations, envelopes, Mathematica.

1 Introduction
Influence lines play an important role in education of structural engineers [1] and
engineering practice, especially designing of bridges [4]. They are functions and called
by mathematicians Green functions or fundamental solution and have important
application in many engineering fields, see for example [3].

The aim of this paper is to show that thanks to Mathematica [7] and implemented
within it generalized functions and calculus operators it is possible to propose a new
analytical approach for evaluation of influence lines and envelopes of internal forces in
beams, especially statically indeterminate.

1.1 Generalized functions
We will use two generalized functions: Heaviside step function \(\theta(x) \) and Dirac \(\delta(x) \).
They are implemented in Mathematica as \texttt{HeavisideTheta[x]} and \texttt{DiracDelta[x]}, respectively.

Heaviside step function can be defined with the following piecewise function [2, 6]

\[
\theta(x) := \begin{cases}
0 & x < 0 \\
\frac{1}{2} & x = 0 \\
1 & x > 0
\end{cases}.
\]

(1)

Its derivative is a Dirac delta [5].
\[
\theta'(x) = \delta(x)
\]

(2)

¹ Ryszard Walentyński MSc PhD DSc, Associate Professor at Silesian University of Technology, Faculty of Civil Engineering, Chair of Building Structures Theory, ul. Akademicka 5, 44-100 Gliwice, Poland, Ryszard.Walentynski@polsl.pl
Dirac delta can be defined with the following piecewise function [6]
\[
\delta(x) = \begin{cases}
0 & x \neq 0 \\
\infty & x = 0
\end{cases}.
\] (3)

Its integral within any integral containing point \(x = 0 \) is equal to 1.
\[
\int_{-\infty}^{\infty} \delta(x) \, dx = \int_{-\alpha}^{\alpha} \delta(x) \, dx = 1.
\] (4)

Both functions can be differentiate and integrate within Mathematica. More information can be found in [5] and [6].

1.2 Application of generalized functions in structural mechanics

Let us analyze a simply supported beam presented in Fig. 1.

Deflection function \(y(x) \) of this beam loaded with a point load \(P \) in a distance \(\alpha \) from the left support and with bending stiffness \(EJ \) can be evaluated by the solution of the following differential equation [7].
\[
EJ \frac{d^4 y}{dx^4} = -P \delta(x - \alpha)
\] (5)
The following boundary conditions holds in the analyzed case.
\[
y(0) = 0, \, y(l) = 0, \, y''(0) = 0, \, y''(l) = 0.
\] (6)

Mathematica has implemented operator for solving analytically differential equations DSolve[]. After evaluation the solution it is simplified with FullSimplify[] function, taking into account limitations of \(x \) and \(\alpha \) (Assuming[]).

Assuming[0 < \alpha < l && 0 < x < l, FullSimplify[DSolve[{EJ y''''[x] = = -P DiracDelta[x - \alpha], y[0] == 0, y[l] == 0, y''[0] == 0, y''[l] = = 0}, y[x], x]]]

\[
\{y[x] \rightarrow \frac{1}{6EJl}(P\ell(\ell - \alpha)(x^2 + \alpha(-2\ell + \alpha)) - lP(x - \alpha)^5\text{HeavisideTheta}[x - \alpha])\}
\]

Diagram of the deflection of this beam when the force is placed in the middle of it is presented in Fig. 2.
When the beam is loaded with a point moment (pair of forces) K the differential equation is defined with, where position of the moment is defined with the first derivative of the Dirac delta.

$$EJ \ y^{(4)}(x) = K \ \delta'(x-a)$$ \hspace{1cm} (7)

Assuming $[0 < \alpha < l/3 \wedge 0 < x < l, \text{FullSimplify}[[E]y^{(4)}(x) = K \text{DiracDelta}'(x-a), y[0] == 0, y[l] == 0, y''[0] == 0, y''[l] == 0], y[x], x]]$

$[[y[x] + \frac{1}{6 Eg} K(-x(2l^2 + x^2 - 6l\alpha + 3\alpha^2) + 3l(x - \alpha)^2 \text{HeavisideTheta}[x - \alpha])]]$

Deflection of the beam loaded with a pair of forces on the left support is shown in Fig. 3.
1.3 Computational experiment – motivation of research

Doing computational experiment with higher derivatives of Dirac delta:

\[y^{(4)}(x) = \delta''(x-a), \quad (8) \]
\[y^{(4)}(x) = \delta''(x-a), \quad (9) \]

it has been found that the obtained functions looked like influence lines of simply supported beam [1] for moments and transverse forces, respectively. It is a main motivation for the presented analyses, since it can be a chance to find more general analytic solution of the problem.

To understand how it works we will start with analysis of simple supported beam showing that eqns (8) and (9) can be derived from the influence lines. Next we will show that influence lines can be derived from these equations for statically indeterminate structures. There is presented that envelopes of the functions can be derived analytically.

2 Analysis of simple supported beam

2.1 Dimensionless coordinates

First we introduce a dimensionless coordinates measured along the beam. They will start in the middle of the beam.

The physical coordinates shown in Fig. 1 are related with dimensionless with the following formula.

\[x := \frac{(1+\xi)}{2}. \quad (10) \]

2.2 Influence line for transverse function

When a considered cross-section has coordinate \(\alpha \) the influence line of transverse force can be described with the following piecewise function [1]

\[IL_T(\xi, \alpha) := \frac{1}{2} \begin{cases} \xi + 1 & \alpha < \xi \\ \xi - 1 & \alpha > \xi \end{cases}. \quad (11) \]

It can be rewritten using Heaviside step function:

\[IL_T(\xi, \alpha) := \theta(\xi - \alpha) - \frac{1+\xi}{2}. \quad (12) \]

Differentiating both sides of (12) four times with regard of \(\xi \) we obtain the following differential equation (compare (9)):

\[IL_T^{(4,0)}(\xi, \alpha) = \delta''^{(3,0)}(\xi - \alpha). \quad (13) \]
Since we will analyze the equation (13) with regard of the first variable, we can set \(ILT(\xi, \alpha) \rightarrow y(\xi) \) and boundary conditions
\[
y(-1) = 0, \ y(l) = 0, \ y''(-1) = 0, \ y''(l) = 0. \tag{14}
\]
Solution with Mathematica is done with, where solution of differential equation with its boundary conditions (\texttt{DSolve}) is simplified (\texttt{FullSimplify}) taking into account domain of the variables \(\xi \) and \(\alpha \) (\texttt{Assuming}).
\[
\text{Assuming}[-1 < \alpha < 1 \land -1 < \xi < 1, \text{FullSimplify}[\text{DSolve}[[y^{(2)}[\xi] == \text{DiracDelta}(\xi - \alpha), y[-1] == 0, y[l] == 0, y''[-1] == 0, y''[l] == 0], y[\xi], \xi]]]
\]
returns expression (12)
\[
\{y[\xi] \rightarrow -\frac{1}{2} - \frac{\xi}{2} + \text{HeavisideTheta}(-\alpha + \xi)\}
\]
what proves that the method works. The method has a physical sense\(^2\).

Diagrams of the influence lines for 3 different values of \(\alpha \) are presented in Figs. 5, 6 and 7.

\footnote{Author is an engineer and therefore presents the problem from his practical point of view. Formal mathematical proof and interpretation should be done by a mathematician.}

Fig. 5: Influence line of transverse force in hinged-hinged beam for \(\alpha=-1 \).
Fig. 6: Influence line of transverse force in hinged-hinged beam for $\alpha=-1/2$.

Fig. 7: Influence line of transverse force in hinged-hinged beam for $\alpha=0$.
2.3 Influence line for bending moment

Similar analysis can be done for bending moments and it may be shown, using similar analysis like in the previous subsection, that differential equation describing the problem takes the form:

$$IL\ M^{(4,0)} (\xi, \alpha) = -\frac{1}{2} \delta^{(2,0)} (\xi - \alpha) l.$$ (15)

Setting similarly like in the previous subsection $IL\ M (\xi, \alpha) \rightarrow y(\xi)$ we solve

Assuming $-1 < \alpha < 1$ and $-1 < \xi < 1$, FullSimplify[DSolve[\(y^{(4)}[\xi] == \) $-\frac{1}{2}\text{DiracDelta}''[\xi - \alpha]l, y[-1] == 0, y[1] == 0, y''[-1] == 0, y''[1] == 0, y[\alpha][\xi], \xi]]

Piecewise form is well known influence line of moments in a simply supported beam, compare [1].

$$IL\ M (\xi, \alpha) = \begin{cases} \frac{1}{4} (1 - \alpha)(1 + \xi) & \alpha < \xi \\ \frac{1}{4} (1 + \alpha)(1 - \xi) & \alpha > \xi \end{cases}.$$ (16)

Diagrams of influence lines for 2 different values of α are presented in Figs.8 and 9.

![Fig. 8: Influence line of bending moment in hinged-hinged beam for $\alpha=1/2$.](image-url)
Fig. 9: Influence line of bending moment in hinged-hinged beam for $\alpha=0$.

3 Analysis of clamped-clamped beam

Now we can show that the method work also in case of statically indeterminate structure, for example a clamped-clamped beam, shown in Fig. 10.

Fig. 10: Clamped-clamped beam with dimensionless coordinates

To analyse the problem it enough to change boundary conditions (14) to

$$y(-1) = 0, \quad y(1) = 0, \quad y'(-1) = 0, \quad y'(1) = 0.$$ \hspace{1cm} (17)

3.1 Influence line for bending moment

The solution of differential equation (15) with boundary conditions (17) leads to the following result:

Assuming $-1 < \alpha < 1$
\[\text{FullSimplify[Dsolve[{y^{(4)}[\xi] =} \nonumber \]
\[= \frac{1}{2} \text{DiracDelta}[\xi - \alpha] y[-1] == 0, y[1] == 0, y'[-1] == 0, y'[1] == 0], y[\xi], \xi]] \]
\[
\left\{ y[\xi] - \frac{1}{6} u (1 + \alpha (-2 + \xi)) (1 + \xi)^2 + 4 (-\alpha + \xi) \text{HeavisideTheta}[-\alpha + \xi] \right\}
\]
what can be expressed in piecewise form.

\[
IL M(\xi, \alpha) := -\frac{1}{8} \begin{cases}
(1 + \alpha (\xi - 2)) (1 + \xi)^2 & \alpha < \xi \\
(1 + \alpha (\xi + 2)) (1 - \xi)^2 & \alpha > \xi
\end{cases}
\] (18)

Figures 11-14 shows 4 influence lines for different position of cross-sections on background of their envelopes.

Fig. 11: Influence line of bending moment in clamped-clamped beam for \(\alpha = -1 \)
Fig. 12: Influence line of bending moment in clamped-clamped beam for $\alpha = -\frac{1}{6}$.

Fig. 13: Influence line of bending moment in clamped-clamped beam for $\alpha = -\frac{1}{3}$.
Fig. 14: Influence line of bending moment in clamped-clamped beam for \(\alpha = 0 \)

It is worth to mention that for \(\alpha \in \left(-1, -\frac{1}{3}\right) \) \(\) and \(\alpha \in \left(\frac{1}{3}, 1\right) \) the function of influence line changes the sign and therefore for cross-section in these intervals maximum and minimum moments from live loads are not produced by the loads distributed all over the span. Moreover the minimal moments in supports caused by moving point load are extremal when the force is placed in \(\frac{1}{3} \) of the span: \(M(-1,-\frac{1}{3}) = \frac{4}{27}P l \approx -0.1481P l \) and its absolute value is 18.5\% bigger of the one computed when the force is placed in the middle of the span \(M(-1,0) = \frac{1}{8}P l = -0.125P l \).

3.2 Influence line for transverse force

The solution of differential equation (13) with boundary conditions (17) leads to the following result:

\[
\text{Assuming}\left[-1 < \alpha < 1\&\& -1 < \xi < 1, \text{FullSimplify}\left[D\text{Solve}\left[y^{(1)}(\xi) = -\text{DiracDelta}\left(\xi - \alpha\right), y[-1] = 0, y[1] = 0, y'[-1] = 0, y'[1] = 0, y[\xi]
ight]\right]\right]
\]

\[
\left\{y[\xi] + \frac{1}{4}(\xi - 2 \xi (1 + \xi)) + \text{HeavisideTheta}\left[-\alpha + \xi\right]\right\}
\]

So the solution can be presented in generalized form:

\[
IL\ T(\xi, \alpha) = \theta(\xi - \alpha) + \frac{1}{4}(\xi - 2)(1 + \xi)^2,
\]

or piecewise one
\[ILT(\xi, \alpha) := \begin{cases}
(\xi - 2)(1+\xi)^2 & \alpha < \xi \\
(\xi + 2)(1-\xi)^2 & \alpha > \xi
\end{cases} \] (20)

Figures 11-13 shows 3 influence lines for different position of cross-sections on background of their envelopes.

Fig. 15: Influence line of transverse force in clamped-clamped beam for \(\alpha = -1 \)
Fig. 16: Influence line of transverse force in clamped-clamped beam for $\alpha = -0.5$

Fig. 17: Influence line of transverse force in clamped-clamped beam for $\alpha = 0$
4 Envelopes for uniformly distributed loads

4.1 General formulas

Let us consider that the beam is loaded with dead load \(g \), which is distributed all over the domain and life load \(p \), which can be distributed anywhere. In points where both loads are present intensity of load is:

\[
q = g + q.
\]

(21)

Influence lines are functions and for dead load we can compute values of dead load envelope by the following integral

\[
S_g(\alpha) := \int g IL S(\xi, \alpha) d\xi,
\]

(22)

where \(S \) is in the considered case bending moment \(M \) or transverse force \(T \).

For the life load we have to consider for each cross-section adverse distribution of load. It can be done automatically within Mathematica by filtering positive and negative values with Heaviside step function of influence lines with the following integrals.

\[
S_p^+(\alpha) := \int p IL S(\xi, \alpha) \theta (IL S(\xi, \alpha)) d\xi,
\]

(23)

\[
S_p^-(\alpha) := \int p IL S(\xi, \alpha) \theta (-IL S(\xi, \alpha)) d\xi.
\]

(24)

Having these function we can find envelopes by the following formulas:

\[
S_{q+} := S_g + \frac{P}{q} S_{p+},
\]

(25)

\[
S_{q-} := S_g + \frac{P}{q} S_{p-}.
\]

(26)

4.2 Envelopes of bending moment for clamped-clamped beam

Using scheme described by equations (22)-(24) we obtain analytic functions of envelopes of bending moments.

\[
M_g(\xi) := \frac{g l^2 (1-3\xi^2)}{24},
\]

(27)

\[
M_{p+}(\xi) := \begin{cases}
\frac{(1+\xi)^3(1+3\xi(3+8\xi))}{192\xi^3} & -1 \leq \xi < -\frac{1}{3} \\
\frac{(1-3\xi^2)}{24} & -\frac{1}{3} \leq \xi \leq \frac{1}{3} \\
\frac{(1-\xi)^3(1-3\xi(3-8\xi))}{192\xi^3} & \frac{1}{3} < \xi \leq 1
\end{cases},
\]

(28)
They are presented in Fig. 18. The function (27) is a inner parabola. It coincides with upper envelope (28) in the interval \(\alpha \in \left(-\frac{1}{3}, \frac{1}{3}\right) \). Lower function (29) is tangent to (27) in points \(\xi = -1 \) and \(\xi = 1 \). Functions (28) and (29) are piecewise, but their continuity in points \(\xi = -\frac{1}{3} \) and \(\xi = \frac{1}{3} \) have class \(C^3 \).

From the engineering point of view the important conclusion is that in points \(\xi = -\frac{1}{\sqrt{3}} \) and \(\xi = \frac{1}{\sqrt{3}} \) where function (27) have value 0 the envelopes are not null and if engineer designs here construction joint it must have some bearing capacity to take the bending moment caused by life load.

![Graph of envelopes](image)

Fig. 18: \(M_g(\xi) \), \(M_{p+}(\xi) \), \(M_{p-}(\xi) \) functions for clamped-clamped beam

4.3 Envelopes of transverse force for clamped-clamped beam

Applying scheme (22)-(24) to influence lines (19) we obtain
\[T_g := \frac{-g \xi}{2}, \]
(30)

\[T_{p-} := \frac{(\xi - 3)(1 + \xi)^3}{16}, \]
(31)

\[T_{p+} := \frac{(\xi + 3)(1 - \xi)^3}{16}. \]
(32)

Their diagrams are presented in Fig. 19.

5 Two span beam

5.1 Solution of differential equation

Finally we will analyze two span beam continuous beam simply supported for \(\xi = -1 \) and \(\xi = 0 \) and clamped for \(\xi = 1 \). Spans have length 1 and the scheme is shown in Fig. 20.
The problem is described with a system of two differential equations with regard of functions \(y \) (left hand span) and \(y_1 \) (right hand span) and boundary conditions presented below. In middle support vertical displacement is equal to zero for both functions and the first and second derivative of them are continuous. These requirements produce additional boundary conditions. In the presented below Mathematica expression by DSolve operator we have in the first curly brackets 2 differential equations followed by 8 boundary conditions. Next we have functions with regard which the system should be solved, and finally the variable.

\[
\begin{align*}
\text{Assuming}[-1 < \alpha < 1, -1 < \xi < 1, \text{FullSimplify}[ext{DSolve}[[y^{(4)}[\xi]]] = \quad \\
\quad \text{DiracDelta}''[\xi - \alpha] y_1[\xi] == \text{DiracDelta}''[\xi - \alpha] y[\xi - 1] = \quad \\
\quad = 0, y_1[0] == 0, y[0] == 0, y'[0] == y'[1], y''[0] = \quad \\
\quad = y''[0], y_1[1] == 0, y'[-1] == 0, y_1[1] == 0], \{y[\xi], y_1[\xi], \xi}\]
\end{align*}
\]

5.2 Influence lines of bending moment two span beam

The solution is presented in Fig. 21.
Several influence lines on background of their envelopes is shown in Figs. 22-29.

Fig. 22: Influence function $IL M(\xi, -2/3)$ of two span hinged-clamped beam

Fig. 23: Influence function $IL M(\xi, -1/3)$ of two span hinged-clamped beam
Fig. 24: Influence function $IL\ M(\xi, -1/6)$ of two span hinged-clamped beam.

Fig. 25: Influence function $IL\ M(\xi, 0)$ of two span hinged-clamped beam.
Fig. 26: Influence function $IL M (\xi, 1/10)$ of two span hinged-clamped beam

Fig. 27: Influence function $IL M (\xi, 1/5)$ of two span hinged-clamped beam
Fig. 28: Influence function $IL M(\xi, \frac{1}{2})$ of two span hinged-clamped beam

Fig. 29: Influence function $IL M(\xi, \frac{2}{3})$ of two span hinged-clamped beam
Envelopes of bending moments for two different proportions p/q are presented in Figs. 30 and 31.

Fig. 30: $M_\xi(\xi)$, $M_{p\xi}(\xi)$, $M_{p-\xi}(\xi)$ functions of two span hinged-clamped beam

Fig. 31: $M_\xi(\xi)$, $M_{q\xi}(\xi)$, $M_{q-\xi}(\xi)$ functions of two span hinged-clamped beam and $p/q=0.5$.
Finally bending moments caused by moving point load on background of the envelopes is presented in Figs. 32-36.

Fig. 32: Bending moment function caused by point load P in position $c = -0.585$ on background of its envelope in two span hinged-clamped beam

Fig. 33: Bending moment function caused by point load P in position $c = -0.445$ on background of its envelope in two span hinged-clamped beam
Fig. 34: Bending moment function caused by point load P in position $c = 0.325$ on background of its envelope in two span hinged-clamped beam

Fig. 35: Bending moment function caused by point load P in position $c = 0.43$ on background of its envelope in two span hinged-clamped beam
6 Conclusion

There is presented that thanks to Mathematica and implemented into it generalized functions and calculus operators it is possible to introduce an analytical method of evaluation influence lines in statically indeterminate beams. Moreover envelopes of internal forces can be also evaluated analytically.

The proposed approach is a result of computational experiment with fourth order differential equation which right hand side contains higher derivatives of Dirac delta. It has been found that the solution has a physical sense and interesting engineering application.

The presented approach can be applied in engineering practice and education of Structural Engineering students.

Acknowledgements

The Author wants to thank dr inż. Jerzy Pilśniak for possibility of use his program szkicownik.exe, which has been applied to prepare drawings of statical schemes in this paper, Figs 1,4,10 and 20.

References

